论文标题

Kleslesydra-t:设计多线程边缘核心的矢量协处理器

Klessydra-T: Designing Vector Coprocessors for Multi-Threaded Edge-Computing Cores

论文作者

Cheikh, Abdallah, Sordillo, Stefano, Mastrandrea, Antonio, Menichelli, Francesco, Scotti, Giuseppe, Olivieri, Mauro

论文摘要

计算密集型内核,例如卷积,矩阵乘法和傅立叶变换,是边缘计算AI,信号处理和加密应用的基础。相互交织的杂种线程(IMT)处理器内核很有趣,可以追求能源效率和低硬件成本以进行边缘计算,但是他们需要硬件加速方案来运行大量的计算工作负载。遵循矢量加速计算的方法,本研究探讨了在RISC-V内核中实现向量调查单元的可能替代方法,显示了目标工作负载中IMT和数据级并行性之间的协同作用。

Computation intensive kernels, such as convolutions, matrix multiplication and Fourier transform, are fundamental to edge-computing AI, signal processing and cryptographic applications. Interleaved-Multi-Threading (IMT) processor cores are interesting to pursue energy efficiency and low hardware cost for edge-computing, yet they need hardware acceleration schemes to run heavy computational workloads. Following a vector approach to accelerate computations, this study explores possible alternatives to implement vector coprocessing units in RISC-V cores, showing the synergy between IMT and data-level parallelism in the target workloads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源