论文标题

有效的线性和仿射代码,用于校正插入/删除

Efficient Linear and Affine Codes for Correcting Insertions/Deletions

论文作者

Cheng, Kuan, Guruswami, Venkatesan, Haeupler, Bernhard, Li, Xin

论文摘要

本文研究\ emph {linear}和\ emph {仿射}错误校正校正同步错误(例如插入和删除)的代码。我们调用此类代码线性/仿射Insdel代码。 甚至可以纠正单个删除的线性代码限制至最多具有$ 1/2 $的信息率(通过琐碎的2倍重复代码实现)。以前,(错误地)报告说,更普遍地说,不存在$ k $删除的非平凡线性代码,即$(k+1)$ - 折叠重复代码及其$ 1/(k+1)$的速率基本上是任何$ k $的最佳选择。我们反驳了这一点,并表明存在长度$ n $的二进制线性代码,并低于$ 1/2 $的速度能够纠正$ω(n)$插入和删除。这将价格$ 1/2 $确定为从线性代码删除中恢复的急剧阈值,并重新打开寻求更好地理解线性代码校正插入/删除功能的功能的方法。 我们证明了速率与(编辑)线性INSDEL代码的(编辑)距离权衡的新颖外部边界和存在的内部边界。我们通过有效的基于同步的转换来补充我们的存在结果,该转换将任何渐近良好的线性代码转换为将误差敲打为INSDEL错误的渐近线性线性代码。最后,我们表明$ \ frac {1} {2} $ - 利率限制不适合仿射代码,通过给出明确的仿射率$1-ε$,该代码可以有效地纠正恒定的Insdel错误分数。

This paper studies \emph{linear} and \emph{affine} error-correcting codes for correcting synchronization errors such as insertions and deletions. We call such codes linear/affine insdel codes. Linear codes that can correct even a single deletion are limited to have information rate at most $1/2$ (achieved by the trivial 2-fold repetition code). Previously, it was (erroneously) reported that more generally no non-trivial linear codes correcting $k$ deletions exist, i.e., that the $(k+1)$-fold repetition codes and its rate of $1/(k+1)$ are basically optimal for any $k$. We disprove this and show the existence of binary linear codes of length $n$ and rate just below $1/2$ capable of correcting $Ω(n)$ insertions and deletions. This identifies rate $1/2$ as a sharp threshold for recovery from deletions for linear codes, and reopens the quest for a better understanding of the capabilities of linear codes for correcting insertions/deletions. We prove novel outer bounds and existential inner bounds for the rate vs. (edit) distance trade-off of linear insdel codes. We complement our existential results with an efficient synchronization-string-based transformation that converts any asymptotically-good linear code for Hamming errors into an asymptotically-good linear code for insdel errors. Lastly, we show that the $\frac{1}{2}$-rate limitation does not hold for affine codes by giving an explicit affine code of rate $1-ε$ which can efficiently correct a constant fraction of insdel errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源