论文标题

合作边缘智能的联合多用户DNN分区和计算资源分配

Joint Multi-User DNN Partitioning and Computational Resource Allocation for Collaborative Edge Intelligence

论文作者

Tang, Xin, Chen, Xu, Zeng, Liekang, Yu, Shuai, Chen, Lin

论文摘要

移动边缘计算(MEC)已成为一种有希望的支持体系结构,为网络边缘提供了各种资源,因此充当Edge Intelligence Servicess具有AI功能的大规模移动和Internet设备(IoT)设备的推动力。借助Edge服务器的帮助,用户设备(UES)能够运行基于深度神经网络(DNN)的AI应用程序,这些应用程序通常是渴望资源的且计算密集型的,因此单个UE几乎无法实时负担。但是,每个单独的边缘服务器中的资源通常受到限制。因此,任何涉及边缘服务器的资源优化本质上都是资源约束的优化问题,需要在这种现实的背景下解决。在这一观察过程中,我们在现实的多用户资源约束条件下研究了DNN分区(新兴的DNN卸载方案)的优化问题,该条件在以前的工作中很少考虑。尽管解决方案空间非常大,但我们揭示了联合多EU DNN分区和计算资源分配的特定优化问题的几个属性。我们提出了一种称为迭代交替优化(IAO)的算法,该算法可以在多项式时间内实现最佳解决方案。此外,我们在现实估计误差下,就时间复杂性和性能方面对算法进行了严格的理论分析。此外,我们建立了一个原型,该原型实现了我们的框架,并使用现实的DNN模型进行了广泛的实验,其结果证明了其有效性和效率。

Mobile Edge Computing (MEC) has emerged as a promising supporting architecture providing a variety of resources to the network edge, thus acting as an enabler for edge intelligence services empowering massive mobile and Internet of Things (IoT) devices with AI capability. With the assistance of edge servers, user equipments (UEs) are able to run deep neural network (DNN) based AI applications, which are generally resource-hungry and compute-intensive, such that an individual UE can hardly afford by itself in real time. However the resources in each individual edge server are typically limited. Therefore, any resource optimization involving edge servers is by nature a resource-constrained optimization problem and needs to be tackled in such realistic context. Motivated by this observation, we investigate the optimization problem of DNN partitioning (an emerging DNN offloading scheme) in a realistic multi-user resource-constrained condition that rarely considered in previous works. Despite the extremely large solution space, we reveal several properties of this specific optimization problem of joint multi-UE DNN partitioning and computational resource allocation. We propose an algorithm called Iterative Alternating Optimization (IAO) that can achieve the optimal solution in polynomial time. In addition, we present rigorous theoretic analysis of our algorithm in terms of time complexity and performance under realistic estimation error. Moreover, we build a prototype that implements our framework and conduct extensive experiments using realistic DNN models, whose results demonstrate its effectiveness and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源