论文标题
散装组成对陆地系外行星长期内部大气进化的影响
The influence of bulk composition on long-term interior-atmosphere evolution of terrestrial exoplanets
论文作者
论文摘要
目的:地质时期与内部相互作用,陆生行星的次要大气形成并进化。我们旨在量化行星散装组成对地球大小的陆地行星内部 - 大气进化的影响,以帮助解释未来对陆地外球星大气的观察。方法:我们使用一个地球化学模型来确定行星内部插入式内饰的主要元素组成(MGO,FEO和SIO2),在行星形成后岩浆海洋结晶后,预测了内饰作为我们长期热进化模型的初始条件。我们的1D进化模型预测了内部的压力温度结构,我们用来评估近地表熔体产生和随后的挥发性量超过味道。根据质量保护,在内部和大气之间交换挥发物。结果:基于Hypatia目录中报道的恒星组成,我们预测,大约一半的岩石系外行星具有将对流作为单层(全枪塔对流)的壁看,另一半则表现出双层对流,这是由于存在中型内膜组成边界。对于具有高散装行星Fe含量和低Mg/si-Ratio的行星,双层对流的对流更有可能。我们发现,低Mg/Si-Ratio的行星由于地幔粘度很高而趋于缓慢冷却。因此,低毫克/SI行星也倾向于通过广泛的熔融迅速失去挥发物。此外,岩石圈的动态状态(板块构造与停滞的盖子)对热进化和挥发性循环具有一阶影响。这些结果表明,陆生大气的组成可以提供有关岩石圈动态状态和内部热化学演化的信息。
Aims: The secondary atmospheres of terrestrial planets form and evolve as a consequence of interaction with the interior over geological time. We aim to quantify the influence of planetary bulk composition on the interior--atmosphere evolution for Earth-sized terrestrial planets to aid in the interpretation of future observations of terrestrial exoplanet atmospheres. Methods: We used a geochemical model to determine the major-element composition of planetary interiors (MgO, FeO, and SiO2) following the crystallization of a magma ocean after planet formation, predicting a compositional profile of the interior as an initial condition for our long-term thermal evolution model. Our 1D evolution model predicts the pressure-temperature structure of the interior, which we used to evaluate near-surface melt production and subsequent volatile outgassing. Volatiles are exchanged between the interior and atmosphere according to mass conservation. Results: Based on stellar compositions reported in the Hypatia catalog, we predict that about half of rocky exoplanets have a mantle that convects as a single layer (whole-mantle convection), and the other half exhibit double-layered convection due to the presence of a mid-mantle compositional boundary. Double-layered convection is more likely for planets with high bulk planetary Fe-content and low Mg/Si-ratio. We find that planets with low Mg/Si-ratio tend to cool slowly because their mantle viscosity is high. Accordingly, low-Mg/Si planets also tend to lose volatiles swiftly through extensive melting. Moreover, the dynamic regime of the lithosphere (plate tectonics vs.\ stagnant lid) has a first-order influence on the thermal evolution and volatile cycling. These results suggest that the composition of terrestrial exoplanetary atmospheres can provide information on the dynamic regime of the lithosphere and the thermo-chemical evolution of the interior.