论文标题
随时间延迟的传输方程与普通微分方程之间的耦合系统的分叉分析
Bifurcation analysis of a coupled system between a transport equation and an ordinary differential equation with time delay
论文作者
论文摘要
在本文中,我们分析了随时间延迟的传输方程与普通微分方程之间的耦合系统(这是肾脏血流控制模型的简化版本)。通过仔细的光谱分析,我们表征了稳定性区域,即系统稳定的一组参数。此外,我们进行分叉分析并确定稳定稳态集和极限周期振荡区域的某些特性。一些数值示例说明了理论结果。
In this paper we analyze a coupled system between a transport equation and an ordinary differential equation with time delay (which is a simplified version of a model for kidney blood flow control). Through a careful spectral analysis we characterize the region of stability, namely the set of parameters for which the system is exponentially stable. Also, we perform a bifurcation analysis and determine some properties of the stable steady state set and the limit cycle oscillation region. Some numerical examples illustrate the theoretical results.