论文标题

概率主动元学习

Probabilistic Active Meta-Learning

论文作者

Kaddour, Jean, Sæmundsson, Steindór, Deisenroth, Marc Peter

论文摘要

在数据收集昂贵的许多实际应用中,数据效率高效的学习算法是必不可少的,例如,由于磨损而在机器人技术中。为了解决此问题,元学习算法使用有关任务的先前经验来有效地学习新的相关任务。通常,假定给出或随机选择一组培训任务。但是,此设置未考虑在现实生活中从头开始训练模型时自然产生的顺序性质:我们如何以数据效率的方式收集一组培训任务?在这项工作中,我们通过使用概率潜在变量模型概念化学习者和主动的元学习设置,将基于先前经验的任务选择介绍到元学习算法中。我们提供的经验证据表明,与模拟机器人实验的强基础相比,我们的方法可以提高数据效率。

Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to learn new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源