论文标题

通过局部SU(2)粘结拓扑的轻松模型二进制玻璃中的相关障碍

Correlated disorder in a well relaxed model binary glass through a local SU(2) bonding topology

论文作者

Derlet, P. M.

论文摘要

对微观玻璃结构的基础的微观约束的定量理解是开发无定形固体结构演化和可塑性的微观理论的关键。在这里,我们证明了D. R. Nelson [Phys。 Rev. B 28,5515(1983)],用于模型二进制Lennard-Jones玻璃结构,该结构进行了一个等温退火模拟,该模拟跨越了10个微秒的物理模拟时间。通过引入一种修改的激进voronoi tessellation,它消除了对最近的邻居纽带的枚举的含糊不清,发现当地的原子环境中很大一部分($> 95 \%$)遵循尼尔森(Nelson)拓平的SU(2)拓扑的连接性规则,导致了披露披露债券的密集网络,使债券构成了披露债券的特征。此外,从数值上表明,低能玻璃结构对应于键长的挫败感的降低,因此对应于最小缺陷的键缺失网络。然后证明,这种缺陷网络提供了一个框架,可以在其中分析热激活的结构激励,从而揭示那些不遵循连接性约束的高能量/低密度区域,更有可能经历结构重排,通常会导致局部放松,这会导致新的SU(2)本地拓扑内容的创造。

A quantitative understanding of the microscopic constraints which underlie a well relaxed glassy structure is the key to developing a microscopic theory of structural evolution and plasticity for the amorphous solid. Here we demonstrate the applicability of one such theory of local bonding constraints developed by D. R. Nelson [Phys. Rev. B 28, 5515 (1983)], for a model binary Lennard-Jones glass structure that has undergone an isothermal annealing simulation spanning over 10 micro-seconds of physical simulation time. By introducing a modified radical Voronoi tessellation which removes some ambiguity in how nearest neighbour bonds are enumerated, it is found, that a large proportion ($>95\%$) of local atomic environments follow the connectivity rules of the SU(2) topology of Nelson's work resulting in a dense network of disclination lines characterizing the defect bonds. Furthermore, it is numerically shown that a low energy glass structure corresponds to a reduced level of bond-length frustration and thus a minimally defected bond-defect network. It is then demonstrated that such a defect network provides a framework in which to analyse thermally-activated structural excitations, revealing those high-energy/low-density regions not following the connectivity constraints are more likely to undergo structural rearrangement that often results in a local relaxation that ends with the creation of new SU(2) local topology content.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源