论文标题
X射线天文学的双SOI像素传感器对辐射损伤影响
Radiation Damage Effects on Double-SOI Pixel Sensors for X-ray Astronomy
论文作者
论文摘要
X射线SOI像素传感器在板上的力卫星将放置在低地轨道中,因此将遭受主要由地磁捕获的宇宙射线质子引起的辐射效应。基于对辐射对SOI像素传感器的影响的先前研究,氧化物层中捕获的正电荷显着影响传感器的性能。为了改善SOI像素传感器的辐射硬度,我们引入了一个双SOI(D-SOI)结构,该结构包含氧化物层中额外的中间Si层。由于被捕获的正电荷,因此在中部SI层上应用的负电势可以补偿辐射效应。尽管已经评估了D-SOI像素传感器在高能加速器中应用的辐射硬度,但迄今尚未评估D-SOI传感器中天文应用的辐射效应。为了评估D-SOI传感器的辐射效应,我们使用6 meV质子束进行辐照实验,总剂量为〜5 krad,对应于几十年的轨内运行。该实验表明X-Ray D-SOI设备的辐射硬度有所改善。在使用D-SOI设备上使用5 krad的辐照时,5.9盎司X射线的全宽度最大能量分辨率增加了7 $ \ pm $ 2%,而芯片输出增益降低了0.35 $ \ pm $ 0.09%。还研究了增益降解的物理机制。发现增益降解是由于埋入的N孔扩大而导致寄生电容的增加引起的。
The X-ray SOI pixel sensor onboard the FORCE satellite will be placed in the low earth orbit and will consequently suffer from the radiation effects mainly caused by geomagnetically trapped cosmic-ray protons. Based on previous studies on the effects of radiation on SOI pixel sensors, the positive charges trapped in the oxide layer significantly affect the performance of the sensor. To improve the radiation hardness of the SOI pixel sensors, we introduced a double-SOI (D-SOI) structure containing an additional middle Si layer in the oxide layer. The negative potential applied on the middle Si layer compensates for the radiation effects, due to the trapped positive charges. Although the radiation hardness of the D-SOI pixel sensors for applications in high-energy accelerators has been evaluated, radiation effects for astronomical application in the D-SOI sensors has not been evaluated thus far. To evaluate the radiation effects of the D-SOI sensor, we perform an irradiation experiment using a 6-MeV proton beam with a total dose of ~ 5 krad, corresponding to a few tens of years of in-orbit operation. This experiment indicates an improvement in the radiation hardness of the X- ray D-SOI devices. On using an irradiation of 5 krad on the D-SOI device, the energy resolution in the full-width half maximum for the 5.9-keV X-ray increases by 7 $\pm$ 2%, and the chip output gain decreases by 0.35 $\pm$ 0.09%. The physical mechanism of the gain degradation is also investigated; it is found that the gain degradation is caused by an increase in the parasitic capacitance due to the enlarged buried n-well.