论文标题

使用Quanta图像传感器的动态低光成像

Dynamic Low-light Imaging with Quanta Image Sensors

论文作者

Chi, Yiheng, Gnanasambandam, Abhiram, Koltun, Vladlen, Chan, Stanley H.

论文摘要

低光的成像很困难,因为到达传感器的光子数量很低。在弱光环境中成像动态场景更加困难,因为随着场景的移动,相邻框架中的像素需要对齐才能被对齐。常规的CMOS图像传感器(CI)在动态弱光设置中处于特殊缺点,因为暴露不能太短,以免读取噪声淹没信号。我们使用Quanta图像传感器(QIS)提出了一个解决方案,并提出了一种新的图像重建算法。 QIS是具有光子计数功能的单光子图像传感器。在过去的十年中,研究证实了QIS对低光成像的有效性,但是在弱光下为动态场景进行的重建算法仍然是一个空旷的问题。我们通过提出一项学生教师培训方案来填补空白,该方案将知识从运动教师和剥夺教师转移到学生网络。我们表明,动态场景可以从每帧的光子1光子的光子水平爆发中重建。实验结果证实了该方法与现有方法相比的优势。

Imaging in low light is difficult because the number of photons arriving at the sensor is low. Imaging dynamic scenes in low-light environments is even more difficult because as the scene moves, pixels in adjacent frames need to be aligned before they can be denoised. Conventional CMOS image sensors (CIS) are at a particular disadvantage in dynamic low-light settings because the exposure cannot be too short lest the read noise overwhelms the signal. We propose a solution using Quanta Image Sensors (QIS) and present a new image reconstruction algorithm. QIS are single-photon image sensors with photon counting capabilities. Studies over the past decade have confirmed the effectiveness of QIS for low-light imaging but reconstruction algorithms for dynamic scenes in low light remain an open problem. We fill the gap by proposing a student-teacher training protocol that transfers knowledge from a motion teacher and a denoising teacher to a student network. We show that dynamic scenes can be reconstructed from a burst of frames at a photon level of 1 photon per pixel per frame. Experimental results confirm the advantages of the proposed method compared to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源