论文标题

作为天体物理探针,探索银河系的互相关

Exploring galaxies-gravitational waves cross-correlations as an astrophysical probe

论文作者

Scelfo, Giulio, Boco, Lumen, Lapi, Andrea, Viel, Matteo

论文摘要

引力波天文学为研究宇宙提供了新的机会。通过将来自重力波实验的数据与大型结构(如星系)的发光示踪剂(如星系)相结合,特别是通过将来自重力波实验的数据组合在一起来提供全面剥削。在这项工作中,我们研究了爱因斯坦望远镜检测到的重力波之间的互相关信号,并积极地形成星系。星系分布是通过其UV和IR发光函数计算的,被假定为出色的起源的重力波事件是从上述星系分布中自吻的。我们在天体物理一侧提供了最先进的治疗方法,考虑了星系的恒星形成和化学演化历史的影响,以及计算互相关信号,为此我们包括镜头和相对论效应。我们发现测得的互相关信号可以足够强,可以克服噪声并提供清晰的信号。作为这种方法的可能应用,我们考虑了一种概念验证案例,其中我们旨在区分金属性依赖于紧凑型对象的合并效率与没有金属性依赖性的参考案例。考虑到具有星形形成速率的星系$ψ> 10 \:m _ {\ odot} /\ rm {yr} $,在观察时间十年后获得了一个围绕2-4值的信噪比,取决于观察到的天空的分数。这种形式主义可以被用作天体物理探针,并有可能允许测试和比较不同的天体物理场景。

Gravitational waves astronomy has opened a new opportunity to study the Universe. Full exploitation of this window can especially be provided by combining data coming from gravitational waves experiments with luminous tracers of the Large Scale Structure, like galaxies. In this work we investigate the cross-correlation signal between gravitational waves resolved events, as detected by the Einstein Telescope, and actively star-forming galaxies. The galaxies distribution is computed through their UV and IR luminosity functions and the gravitational waves events, assumed to be of stellar origin, are self-consistently computed from the aforementioned galaxies distribution. We provide a state-of-the-art treatment both on the astrophysical side, taking into account the impact of the star formation and chemical evolution histories of galaxies, and in computing the cross-correlation signal, for which we include lensing and relativistic effects. We find that the measured cross-correlation signal can be sufficiently strong to overcome the noise and provide a clear signal. As a possible application of this methodology, we consider a proof-of-concept case in which we aim at discriminating a metallicity dependence on the compact objects merger efficiency against a reference case with no metallicity dependence. When considering galaxies with a Star Formation Rate $ψ> 10 \: M_{\odot} /\rm{yr}$, a Signal-to-Noise ratio around a value of 2-4 is gained after a decade of observation time, depending on the observed fraction of the sky. This formalism can be exploited as an astrophysical probe and could potentially allow to test and compare different astrophysical scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源