论文标题
非线性系统的存在和提高的规律性,椭圆度崩溃
Existence and improved regularity for a nonlinear system with collapsing ellipticity
论文作者
论文摘要
我们研究了由混合奇异/退化类型的椭圆方程组成的非线性系统,以及具有较低集成源的泊松方程。我们证明了在任何空间维度中存在弱解决方案,并且主要是通过切线分析方法得出改进的$ \ Mathcal {C}^{1,\ text {log-lip}} $ - 规则性估算。该系统说明了众所周知的热电阻问题的复杂版本,即使在更简单的建模方案中,我们的结果也是新的。
We study a nonlinear system made up of an elliptic equation of blended singular/degenerate type and Poisson's equation with a lowly integrable source. We prove the existence of a weak solution in any space dimension and, chiefly, derive an improved $\mathcal{C}^{1,\text{log-Lip}}$-regularity estimate using tangential analysis methods. The system illustrates a sophisticated version of the proverbial thermistor problem and our results are new even in simpler modelling scenarios.