论文标题

层次互动网络具有重新思考机制用于文档级别分析的机制

Hierarchical Interaction Networks with Rethinking Mechanism for Document-level Sentiment Analysis

论文作者

Wei, Lingwei, Hu, Dou, Zhou, Wei, Tang, Xuehai, Zhang, Xiaodan, Wang, Xin, Han, Jizhong, Hu, Songlin

论文摘要

文档级别的情感分析(DSA)由于含糊的语义链接并使情感信息复杂化,因此更具挑战性。最近的著作致力于利用文本摘要,并取得了令人鼓舞的结果。但是,这些基于摘要的方法没有充分利用摘要,包括忽略摘要和文档之间的固有交互。结果,他们限于表示文档中的主要观点,这极大地表明了关键情绪。在本文中,我们研究了如何有效地产生具有明确的主题模式和情感上下文的歧视性表示。提出了一个分层交互网络(HIN),以探索多个粒度的摘要与文档之间的双向交互,并学习以主题为导向的文档表示情感分类。此外,我们通过使用情感标签信息来完善Hin来设计基于情感的重新思考机制(SR),以学习更感性的文档表示。我们在三个公共数据集上广泛评估了我们提出的模型。实验结果始终证明了我们提出的模型的有效性,并表明HIN-SR优于各种最新方法。

Document-level Sentiment Analysis (DSA) is more challenging due to vague semantic links and complicate sentiment information. Recent works have been devoted to leveraging text summarization and have achieved promising results. However, these summarization-based methods did not take full advantage of the summary including ignoring the inherent interactions between the summary and document. As a result, they limited the representation to express major points in the document, which is highly indicative of the key sentiment. In this paper, we study how to effectively generate a discriminative representation with explicit subject patterns and sentiment contexts for DSA. A Hierarchical Interaction Networks (HIN) is proposed to explore bidirectional interactions between the summary and document at multiple granularities and learn subject-oriented document representations for sentiment classification. Furthermore, we design a Sentiment-based Rethinking mechanism (SR) by refining the HIN with sentiment label information to learn a more sentiment-aware document representation. We extensively evaluate our proposed models on three public datasets. The experimental results consistently demonstrate the effectiveness of our proposed models and show that HIN-SR outperforms various state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源