论文标题

上行链路NOMA-iot网络中的资源分配:一种加强学习方法

Resource Allocation in Uplink NOMA-IoT Networks: A Reinforcement-Learning Approach

论文作者

Ahsan, Waleed, Yi, Wenqiang, Qin, Zhijin, Liu, Yuanwei, Nallanathan, Arumugam

论文摘要

非正交的多重访问(NOMA)利用了功率域的潜力来增强物联网(IoT)的连接性。由于时间变化的沟通渠道,动态用户聚类是增加Noma-iot网络吞吐量的一种有前途的方法。本文为上行链路NOMA-iot通信开发了智能资源分配方案。为了最大程度地提高总和率的平均性能,这项工作设计了一种有效的优化方法,基于两种强化学习算法,即深度强化学习(DRL)和SARSA学习。对于轻度流量,SARSA学习用于探索以低成本的最安全资源分配策略。对于流量繁忙,DRL用于处理流量引入的巨大变量。借助考虑的方法,这项工作解决了NOMA技术中公平资源分配的两个主要问题:1)动态分配用户和2)平衡资源块和网络流量。我们在分析上证明,收敛速度与网络大小成反比。数值结果表明:1)与最佳基准方案相比,所提出的DRL和SARSA学习算法具有较低的复杂性,并且可接受的精度和2)NOMA启用IoT网络在系统吞吐量方面优于常规正交多元访问的IoT基于多个多元访问的IoT网络。

Non-orthogonal multiple access (NOMA) exploits the potential of the power domain to enhance the connectivity for the Internet of Things (IoT). Due to time-varying communication channels, dynamic user clustering is a promising method to increase the throughput of NOMA-IoT networks. This paper develops an intelligent resource allocation scheme for uplink NOMA-IoT communications. To maximise the average performance of sum rates, this work designs an efficient optimization approach based on two reinforcement learning algorithms, namely deep reinforcement learning (DRL) and SARSA-learning. For light traffic, SARSA-learning is used to explore the safest resource allocation policy with low cost. For heavy traffic, DRL is used to handle traffic-introduced huge variables. With the aid of the considered approach, this work addresses two main problems of fair resource allocation in NOMA techniques: 1) allocating users dynamically and 2) balancing resource blocks and network traffic. We analytically demonstrate that the rate of convergence is inversely proportional to network sizes. Numerical results show that: 1) Compared with the optimal benchmark scheme, the proposed DRL and SARSA-learning algorithms have lower complexity with acceptable accuracy and 2) NOMA-enabled IoT networks outperform the conventional orthogonal multiple access based IoT networks in terms of system throughput.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源