论文标题
广义贝塞尔电势的最佳calderón空间
Optimal Calderón Spaces for generalized Bessel potentials
论文作者
论文摘要
在本文中,我们研究了具有广义平滑度的空间的性质,例如包括经典的Nikolskii-Besov空间及其许多概括,并描述包含经典Bessel电位和Sobolev空间的概括性差异性能。电势的内核可能具有非力量奇异性。在电位连续性模量的订单分布估计的帮助下,我们建立了电势嵌入到Calderón空间中的标准,并描述了此类嵌入的最佳空间。
In the paper we investigate the properties of spaces with generalized smoothness, such as Calderón spaces that include the classical Nikolskii-Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. Kernels of potentials may have non-power singularity at the origin. With the help of order-sharp estimates for moduli of continuity of potentials, we establish the criteria of embeddings of potentials into Calderón spaces, and describe the optimal spaces for such embeddings.