论文标题

边界驱动粒子系统和非平衡相关性的正交多项式二元性

Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations

论文作者

Floreani, Simone, Redig, Frank, Sau, Federico

论文摘要

我们考虑与储层接触的一般图中的对称部分排除和包含过程,在那里我们允许边缘障碍和精心挑选的部位障碍。我们将经典二元性扩展到这种情况,然后得出新的正交多项式双重性。从经典二元性中,我们得出了非平衡稳态的独特性并获得相关性不平等。从正交多项式二元性开始,我们显示了具有最多两个不同储层参数的系统的非平衡稳态稳态中N点相关函数的通用性能,例如在左和右端具有储层的链条。

We consider symmetric partial exclusion and inclusion processes in a general graph in contact with reservoirs, where we allow both for edge disorder and well-chosen site disorder. We extend the classical dualities to this context and then we derive new orthogonal polynomial dualities. From the classical dualities, we derive the uniqueness of the non-equilibrium steady state and obtain correlation inequalities. Starting from the orthogonal polynomial dualities, we show universal properties of n-point correlation functions in the non-equilibrium steady state for systems with at most two different reservoir parameters, such as a chain with reservoirs at left and right ends.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源