论文标题

33%的巨大霍尔霍尔电流由磁性Weyl半分co3sn2s2驱动的驱动

33% Giant Anomalous Hall Current Driven by both Intrinsic and Extrinsic Contributions in Magnetic Weyl Semimetal Co3Sn2S2

论文作者

Shen, Jianlei, Zeng, Qingqi, Zhang, Shen, Sun, Hongyi, Yao, Qiushi, Xi, Xuekui, Wang, Wenhong, Wu, Guangheng, Shen, Baogen, Liu, Qihang, Liu, Enke

论文摘要

由于带浆液相和外在的杂质散射引起的外部机制,可以通过固有机制引起异常的大厅效应(AHE)。最近发现的磁性Weyl Semimetal CO3SN2S2表现出较大的内在异常电导率(AHC)和巨大的异常霍尔角(AHA)。该材料中AHC的预测能量依赖性在1000Ω-1 cm-1的平稳性和100 meV的能量宽度在EF以下的100 MeV,因此暗示大型固有的AHC不会在小规模的能量干扰(例如轻微的P掺杂)上显着变化。在这里,除了在co3sn2s2中引入少量的fe掺杂剂,我们通过在固有的原始材料中成功触发了外来原子散射的外在贡献。我们的实验结果表明,由于由TYJ模型区分的固有和外在机制的协同贡献,AHC和AHA可以分别提高到1850Ω-1 cm-1和33%。特别是,调谐的AHA在已知磁性材料中的低场中具有创纪录的值。这项研究为磁性Weyl半法的工程师巨型AHE打开了一条途径,从而有潜在地推进了拓扑旋转/Weyltronics。

Anomalous Hall effect (AHE) can be induced by intrinsic mechanism due to the band Berry phase and extrinsic one arising from the impurity scattering. The recently discovered magnetic Weyl semimetal Co3Sn2S2 exhibits a large intrinsic anomalous Hall conductivity (AHC) and a giant anomalous Hall angle (AHA). The predicted energy dependence of the AHC in this material exhibits a plateau at 1000 Ω-1 cm-1 and an energy width of 100 meV just below EF, thereby implying that the large intrinsic AHC will not significantly change against small-scale energy disturbances such as slight p-doping. Here, we successfully trigger the extrinsic contribution from alien-atom scattering in addition to the intrinsic one of the pristine material by introducing a small amount of Fe dopant to substitute Co in Co3Sn2S2. Our experimental results show that the AHC and AHA can be prominently enhanced up to 1850 Ω-1 cm-1 and 33%, respectively, owing to the synergistic contributions from the intrinsic and extrinsic mechanisms as distinguished by the TYJ model. In particular, the tuned AHA holds a record value in low fields among known magnetic materials. This study opens up a pathway to engineer giant AHE in magnetic Weyl semimetals, thereby potentially advancing the topological spintronics/Weyltronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源