论文标题

线性发布的收入差距的界限,以销售可划分的物品

Bounds on the revenue gap of linear posted pricing for selling a divisible item

论文作者

Caragiannis, Ioannis, Jiang, Zhile, Kerentzis, Apostolis

论文摘要

将一个完全可分开的物品卖给潜在买家是一项基本任务,其明显的应用程序可以定价通信带宽和云计算服务。令人惊讶的是,尽管关于单项拍卖的文献丰富,但在出售可分解的商品时的收入最大化是一个不太了解的目标。我们介绍了贝叶斯设置,其中潜在的买家具有根据已知概率分布随机选择的凹入估值功能(定义为每个可能的项目分数)。扩展了连续发布的定价范例,我们专注于使用线性定价的机制,为整个项目的固定价格收取固定价格,并为其分数收取比例的价格。我们的目标是通过在这些机制中获得最好的收入与预期收入之间的差距来了解这种机制的力量,以及这些机制中最大的预期收入可以通过任何机制来实现的最大预期收入。在概率分布的规律性假设下,我们表明,此收入差距仅取决于对数的自然参数,该参数表征了估值功能和代理的数量。我们的结果遵循数学计划的客观价值,该计划在线性定价收入约束下最大程度地放松了最佳收入。

Selling a perfectly divisible item to potential buyers is a fundamental task with apparent applications to pricing communication bandwidth and cloud computing services. Surprisingly, despite the rich literature on single-item auctions, revenue maximization when selling a divisible item is a much less understood objective. We introduce a Bayesian setting, in which the potential buyers have concave valuation functions (defined for each possible item fraction) that are randomly chosen according to known probability distributions. Extending the sequential posted pricing paradigm, we focus on mechanisms that use linear pricing, charging a fixed price for the whole item and proportional prices for fractions of it. Our goal is to understand the power of such mechanisms by bounding the gap between the expected revenue that can be achieved by the best among these mechanisms and the maximum expected revenue that can be achieved by any mechanism assuming mild restrictions on the behavior of the buyers. Under regularity assumptions for the probability distributions, we show that this revenue gap depends only logarithmically on a natural parameter characterizing the valuation functions and the number of agents. Our results follow by bounding the objective value of a mathematical program that maximizes the ex-ante relaxation of optimal revenue under linear pricing revenue constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源