论文标题

基于U-NET的架构,用于改进医学图像中的多解决分段

U-Net Based Architecture for an Improved Multiresolution Segmentation in Medical Images

论文作者

Jahangard, Simindokht, Zangooei, Mohammad Hossein, Shahedi, Maysam

论文摘要

目的:手动医疗图像分割是一项累累且耗时的任务,以及高观察者间的可变性。在这项研究中,我们的目标是改善U-NET体系结构的多分辨率图像分割性能。方法:我们已经提出了一个完全卷积的神经网络,用于在多分辨率框架中进行图像分割。我们将U-NET用作基本体系结构,并将其修改为改善其图像分割性能。在拟议的体系结构(MRU-NET)中,输入图像及其下采样版本用作网络输入。我们添加了更多的卷积层,以直接从下采样的图像中提取特征。我们在四个不同的医疗数据集上训练和测试了网络,包括皮肤病变照片,肺计算机断层扫描(CT)图像(LUNA数据集),视网膜图像(驱动器数据集)和前列腺磁共振(MR)图像(Promise12 DataSet)。我们在类似的训练和测试条件下比较了MRU-NET与U-NET的性能。结果:将结果与手动分割标签进行比较,MRU-NET的平均骰子相似性系数分别为70.6%,97.9%,73.6%和77.9%,分别为皮肤病变,LUNA,LUNA,DRIVE和Promise12分割。对于皮肤病变,LUNA和驱动数据集,MRU-NET的表现优于U-NET的精度明显更高,而对于Promist12数据集,两个网络都具有相似的精度。此外,与U-NET相比,使用MRU-NET导致Luna的训练率更快,并驱动数据集。结论:所提出的体系结构的引人注目的特征是与U-NET相比,其提取图像衍生功能的功能更高。与U-NET相比,MRU网络说明了更快的训练率和更准确的图像分割。

Purpose: Manual medical image segmentation is an exhausting and time-consuming task along with high inter-observer variability. In this study, our objective is to improve the multi-resolution image segmentation performance of U-Net architecture. Approach: We have proposed a fully convolutional neural network for image segmentation in a multi-resolution framework. We used U-Net as the base architecture and modified that to improve its image segmentation performance. In the proposed architecture (mrU-Net), the input image and its down-sampled versions were used as the network inputs. We added more convolution layers to extract features directly from the down-sampled images. We trained and tested the network on four different medical datasets, including skin lesion photos, lung computed tomography (CT) images (LUNA dataset), retina images (DRIVE dataset), and prostate magnetic resonance (MR) images (PROMISE12 dataset). We compared the performance of mrU-Net to U-Net under similar training and testing conditions. Results: Comparing the results to manual segmentation labels, mrU-Net achieved average Dice similarity coefficients of 70.6%, 97.9%, 73.6%, and 77.9% for the skin lesion, LUNA, DRIVE, and PROMISE12 segmentation, respectively. For the skin lesion, LUNA, and DRIVE datasets, mrU-Net outperformed U-Net with significantly higher accuracy and for the PROMISE12 dataset, both networks achieved similar accuracy. Furthermore, using mrU-Net led to a faster training rate on LUNA and DRIVE datasets when compared to U-Net. Conclusions: The striking feature of the proposed architecture is its higher capability in extracting image-derived features compared to U-Net. mrU-Net illustrated a faster training rate and slightly more accurate image segmentation compared to U-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源