论文标题
对流边界层表面层中的温度曲线,羽和光谱
Temperature profiles, plumes and spectra in the surface layer of convective boundary layers
论文作者
论文摘要
我们从对流边界层(CBL)中调查温度模式和热传输的角度,即这些是远距离平衡,复杂的动力学系统的新兴特性。我们引入了两个温度(2T)玩具模型,以定义羽毛的横截面区域,并将温度梯度,温度差异和热传输的缩放特性连接到该区域。我们检查了温度($ t $)的概率密度功能和$ W $ - $ t $联合概率密度功能,$ t $ spectra和$ wt $ cospectra都在表面摩擦层内和更高。这里$ W $是垂直速度。在讨论$ t $ spectra和$ wt $ cospectra时,我们专注于SFL上方的羽毛和磁通事件的自相似属性。我们将混合长度比例的$ z^{1/2} $依赖性解释为$ t $光谱中的波数字,以反映李子的横截面区域,因此,$ z^{ - 1/2} $形式的温度剖面的形式为$ z $,其中$ z $是观察高度。我们根据SLTEST实验的数据,从表面摩擦层(SFL)中引入了$ t $ spectra和$ wt $ cospectra的新扩展结果。我们证实了早期的结果,表明$ t $ spectra的缩放行为和$ wt $ cospectra的高度更改低于$ z/z_s <0.1 $,其中$ z_s $ sfl的高度,并显示与随机扩散相关的属性。我们将浮力作为CBL流动中的浮力作用与理查森(Richardson)的作用的解释进行了对比,该作用与理查森(Richardson)的作用相反,后者的思想为边界层流的统计流体力学模型的当前解释提供了解释。
We survey temperature patterns and heat transport in convective boundary layers (CBLs) from the perspective that these are emergent properties of far-from-equilibrium, complex dynamical systems. We introduce a two-temperature (2T) toy model to define the cross-sectional areas of plumes, and connect the scaling properties of temperature gradients, temperature variance and heat transport to this area. We examine temperature ($T$) probability density functions and $w$-$T$ joint probability density functions, $T$ spectra and $wT$ cospectra observed both within and above the surface friction layer. Here $w$ is vertical velocity. In our discussion of $T$ spectra and $wT$ cospectra we focus on the self-similarity property of the plumes and flux events above the SFL. We interpret the $z^{1/2}$ dependence of the mixed length scale for wavenumbers in the $T$ spectra as reflecting the cross-sectional areas of the plumes, and so with the $z^{-1/2}$ form of the temperature profile, where $z$ is observation height. We introduce new scaling results for $T$ spectra and $wT$ cospectra from within the surface friction layer (SFL), based on a data from the SLTEST experiment. We confirm earlier results showing that the scaling behaviours of $T$ spectra and $wT$ cospectra change for heights below $z/z_s<0.1$, where $z_s$ the height of the SFL, and come to display properties associated with random diffusion. We conclude by contrasting our interpretation of the role of buoyancy as a system-wide action in CBL flows with that of Richardson, whose ideas inform the current interpretation of the statistical fluid mechanics model of boundary-layer flows.