论文标题
用于广义超图切割的增强弹药仪,并应用于可分解的下函数最小化
Augmented Sparsifiers for Generalized Hypergraph Cuts with Applications to Decomposable Submodular Function Minimization
论文作者
论文摘要
近年来,已经引入和分析了许多剪切问题的超图概括,以此,以更好地探索和理解以多路关系为特征的复杂系统和数据集。最近的工作利用了通用的超毛图剪切功能,该功能对于超graph $ \ mathcal {h} =(v,e)$可以通过将每个hyperegge $ e \ in E $与拆分函数$ {\ bf w} _e $关联来定义,从而将$ e $ e $ $ e $ $ $ $ e $的nodes node的方式分为每种罚款。当每个$ {\ bf w} _e $是一个基于子模化的基数分裂功能时,这意味着$ {\ bf w} _e(s)= g(s)= g(| s |)$对于某些凹形函数$ g $,先前的工作表明,广义的超级分类削减问题可以减少到有指导性的图形问题上,以在增强node设置上的有指导性的图形问题。但是,现有的还原过程通常会导致密集的图,即使超图稀疏,这会导致在还原图上运行的算法的运行缓慢。 我们引入了一个新的稀疏图降低框架的框架,其中由基于基于基于基于基于基的基于基于心脏的拆分功能定义的超图形剪切为$(1+ \ Varepsilon)$ - 通过在有向图上的切割近似。我们的技术基于使用分段线性曲线近似凹面函数。对于$ \ varepsilon> 0 $,我们最多需要$ o(\ varepsilon^{ - 1} | e | e | \ log | e | e |)$ edges来减少任何HyperEdge $ e $,这会导致更快的运行时间,以近似近似广义的超级graph $ s $ s $ - $ t $切割问题。对于集团分割函数的机器学习启发式,我们的方法仅需要$ o(| e | \ varepsilon^{ - 1/2} \ log \ log \ log \ frac \ frac {1} {\ varepsilon})$ edges。这种稀疏导致大约更快的最低$ s $ -s $ -t $图形切割算法,用于某些类别的同时图形。最后,我们将稀疏技术应用于开发近似算法,以最大程度地减少基于基于基于基于基于基础的基基函数的总和。
In recent years, hypergraph generalizations of many graph cut problems have been introduced and analyzed as a way to better explore and understand complex systems and datasets characterized by multiway relationships. Recent work has made use of a generalized hypergraph cut function which for a hypergraph $\mathcal{H} = (V,E)$ can be defined by associating each hyperedge $e \in E$ with a splitting function ${\bf w}_e$, which assigns a penalty to each way of separating the nodes of $e$. When each ${\bf w}_e$ is a submodular cardinality-based splitting function, meaning that ${\bf w}_e(S) = g(|S|)$ for some concave function $g$, previous work has shown that a generalized hypergraph cut problem can be reduced to a directed graph cut problem on an augmented node set. However, existing reduction procedures often result in a dense graph, even when the hypergraph is sparse, which leads to slow runtimes for algorithms that run on the reduced graph. We introduce a new framework of sparsifying hypergraph-to-graph reductions, where a hypergraph cut defined by submodular cardinality-based splitting functions is $(1+\varepsilon)$-approximated by a cut on a directed graph. Our techniques are based on approximating concave functions using piecewise linear curves. For $\varepsilon > 0$ we need at most $O(\varepsilon^{-1}|e| \log |e|)$ edges to reduce any hyperedge $e$, which leads to faster runtimes for approximating generalized hypergraph $s$-$t$ cut problems. For the machine learning heuristic of a clique splitting function, our approach requires only $O(|e| \varepsilon^{-1/2} \log \log \frac{1}{\varepsilon})$ edges. This sparsification leads to faster approximate min $s$-$t$ graph cut algorithms for certain classes of co-occurrence graphs. Finally, we apply our sparsification techniques to develop approximation algorithms for minimizing sums of cardinality-based submodular functions.