论文标题

电荷迁移表现为共轭有机分子中的圆锥体

Charge Migration Manifests as Attosecond Solitons in Conjugated Organic Molecules

论文作者

Mauger, Francois, Folorunso, Aderonke, Hamer, Kyle, Chandre, Cristel, Gaarde, Mette, Lopata, Kenneth, Schafer, Kenneth

论文摘要

电荷迁移是电子响应,它立即跟随分子中的局部电离或激发,然后核有时间移动。它通常在亚前时间尺度上展开,最常见于远离平衡的动力学,涉及复杂化学环境中的多电子相互作用。虽然电荷迁移已在多种有机和无机化合物中在实验和理论上进行了记录,但调节其调节的一般机制仍然没有解决。在这项工作中,我们使用非线性动力学的工具来分析沿偶联碳氢化合物骨架发生的电荷迁移,我们使用时间依赖性密度功能理论对其进行模拟。在此电子密度框架中,我们表明电荷迁移模式以actsond solitons的形式出现,并在简化的模型系统和完整的三维分子模拟中展示了相同类型的单生态波动力学。我们表明,这些稳定的六度模式是由于分散和非线性效应之间的平衡而产生的,与时间相关的多电子相互作用相关。%我们的孤子模式机制以及我们用来分析它的非线性工具,铺平了铺平的方式,以理解迁移的范围,从而逐步迁移,我们可以在跨越型号的范围内进行跨性别的迁移。最初定位的电子扰动及其随后的时间演变。

Charge migration is the electronic response that immediately follows localized ionization or excitation in a molecule, before the nuclei have time to move. It typically unfolds on sub-femtosecond time scales and most often corresponds to dynamics far from equilibrium, involving multi-electron interactions in a complex chemical environment. While charge migration has been documented experimentally and theoretically in multiple organic and inorganic compounds, the general mechanism that regulates it remains unsettled. In this work we use tools from nonlinear dynamics to analyze charge migration that takes place along the backbone of conjugated hydrocarbons, which we simulate using time-dependent density functional theory. In this electron-density framework we show that charge migration modes emerge as attosecond solitons and demonstrate the same type of solitary-wave dynamics in both simplified model systems and full three-dimensional molecular simulations. We show that these attosecond-soliton modes result from a balance between dispersion and nonlinear effects tied to time-dependent multi-electron interactions.%Our soliton-mode mechanism, and the nonlinear tools we use to analyze it, pave the way for understanding migration dynamics in a broad range of organic molecules.%For instance, we demonstrate the opportunities for chemically steering charge migration via molecular functionalization, which can alter both the initially localized electron perturbation and its subsequent time evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源