论文标题
完全且不完整的指数系统
On complete and incomplete exponential systems
论文作者
论文摘要
给定一个有限的域$ω\ subset {\ bbb r}^d $,并带有积极的措施,有限集$ a = \ {a^1,a^2,\ dots,a^d \} $,我们说集合$ {\ Mathcal e}(\ Mathcal e}(a)= {a)= { A^J}}} _ {a} $中的a^j \是一个完整的指数系统,如果对于{\ bbb r}^d $中的每个$ξ\,存在$ 1 \ leq j \ leq j \ leq d+1 $ (a^j-ξ)} dx \ not = 0; \ end {equation}否则$ {\ mathcal e}(a)$称为不完整的指数系统。在本文中,当$ω= b_d $,单位球以及$ω= q_d $,单位立方体时,我们本质上对完整和不完整的指数系统进行了分类。 给定一个有限的域$ω$,我们说$ e^{2πix \ cdot a},e^{2πix \ cdot a'} $是$ ϕ $ - approx,如果$ | \ leq ϕ(| a-a'|),\ a \ a \ neq a'$$其中$ ϕ:[0,\ infty)\ to [0,\ infty)$是一个有界的可测量函数,在infinity时趋向于$ 0 $。我们证明,$ l^2(b_d)$不具备广泛函数$ ϕ $的指数的$ ϕ $ -Approximate正交基础。证明涉及与Furstenberg,Katznelson和Weiss(\ cite {fkw90})开发的阳性Lebesgue上部密度集中距离理论的联系。
Given a bounded domain $Ω\subset {\Bbb R}^d$ with positive measure and a finite set $A=\{a^1, a^2, \dots, a^d\}$, we say that the set ${\mathcal E}(A)={\{e^{2 πi x \cdot a^j}\}}_{a^j \in A}$ is a complete exponential system if for every $ξ\in {\Bbb R}^d$, there exists $1 \leq j \leq d+1$ such that \begin{equation} \label{completedef} \int_Ω e^{-2 πi x \cdot (a^j-ξ)} dx \not=0; \end{equation} otherwise ${\mathcal E}(A)$ is called an incomplete exponential system. In this paper, we essentially classify complete and incomplete exponential systems when $Ω=B_d$, the unit ball, and when $Ω=Q_d$, the unit cube. Given a bounded domain $Ω$, we say that $e^{2 πi x \cdot a}, e^{2 πi x \cdot a'}$ are $ϕ$-approximately orthogonal if $$|\widehatχ_Ω(a-a')| \leq ϕ(|a-a'|), \ a\neq a'$$ where $ϕ: [0, \infty) \to [0, \infty)$ is a bounded measurable function that tends to $0$ at infinity. We prove that $L^2(B_d)$ does not possess a $ϕ$-approximate orthogonal basis of exponentials for a wide range of functions $ϕ$. The proof involves connections with the theory of distances in sets of positive Lebesgue upper density originally developed by Furstenberg, Katznelson and Weiss (\cite{FKW90}).