论文标题
3D蒙特卡洛模拟小鼠大脑中的光分布在定量光声计算机断层扫描中
3D Monte Carlo Simulation of Light Distribution in Mouse Brain in Quantitative Photoacoustic Computed Tomography
论文作者
论文摘要
光声计算机断层扫描(PACT)检测光诱导的超声波,以重建生物组织的光吸收对比度。由于其相对较深的渗透(在软组织中几厘米),高空间分辨率和固有的功能敏感性,PACT具有内源性和外源性对比的小鼠大脑的巨大潜力,这对神经科学社区具有极大的兴趣。但是,常规条约要么假设大脑内的同质光通量,要么使用简化的衰减模型进行光通量估计。两种方法都低估了通畅异质性的复杂性,并可能导致定量成像准确性差。为了优化PACT的定量性能,我们首次探索了3D Monte Carlo模拟,以研究完整的小鼠脑模型中的光通量分布。我们将MCX Monte Carlo仿真软件包应用于具有完整解剖信息的数字小鼠(Digimouse)脑图。为了评估脑脉管系统对光输送的影响,我们还将整个脑脉管系统纳入了Digimouse地图集。模拟结果清楚地表明,在全球水平上,小鼠脑的光通量是异质的,并且深度增加可能会降低五倍。此外,大脑脉管系统的强吸收和散射还会引起局部水平的通量干扰。我们的结果表明,全球和局部通畅的异质性都有助于小鼠大脑重建的PACT图像的定量准确性降低。
Photoacoustic computed tomography (PACT) detects light-induced ultrasound waves to reconstruct the optical absorption contrast of the biological tissues. Due to its relatively deep penetration (several centimeters in soft tissue), high spatial resolution, and inherent functional sensitivity, PACT has great potential for imaging mouse brains with endogenous and exogenous contrasts, which is of immense interest to the neuroscience community. However, conventional PACT either assumes homogenous optical fluence within the brain or uses a simplified attenuation model for optical fluence estimation. Both approaches underestimate the complexity of the fluence heterogeneity and can result in poor quantitative imaging accuracy. To optimize the quantitative performance of PACT, we explore for the first time 3D Monte Carlo simulation to study the optical fluence distribution in a complete mouse brain model. We apply the MCX Monte Carlo simulation package on a digital mouse (Digimouse) brain atlas that has complete anatomy information. To evaluate the impact of the brain vasculature on light delivery, we also incorporate the whole-brain vasculature in the Digimouse atlas. The simulation results clearly show that the optical fluence in the mouse brain is heterogeneous at the global level and can decrease by a factor of five with increasing depth. Moreover, the strong absorption and scattering of the brain vasculature also induce the fluence disturbance at the local level. Our results suggest that both global and local fluence heterogeneity contributes to the reduced quantitative accuracy of the reconstructed PACT images of mouse brain.