论文标题

最佳函数函数通过对数多项式的效果

Best approximation of functions by log-polynomials

论文作者

Alonso-Gutiérrez, David, Merino, Bernardo González, Villa, Rafael

论文摘要

Lasserre [la]证明,对于每个紧凑型设置$ k \ subset \ mathbb r^n $,每个偶数$ d $都存在一个唯一的同质多项式$ g_0 $ g_0 $ d $ $ d $,带有$ k \ subset g_1(g_0)(g_0) $ | g_1(g)| $在所有此类多项式中,$ g $满足条件$ k \ subset g_1(g)$。该结果扩展了Löwner椭圆形的概念,不仅从凸体到任意的紧凑型集(如果$ d = 2 $,则通过拿到凸面船体即时),而且还从椭圆形到任意均匀程度的均质多项式的水平集。 在本文中,我们将此结果扩展到以两种不同方式的非阴性对数concove函数的类别。其中一个是已知结果的直接扩展,另一个是合适的扩展,在相应的问题中具有唯一的溶液,并且在某些“接触点”方面进行了表征。

Lasserre [La] proved that for every compact set $K\subset\mathbb R^n$ and every even number $d$ there exists a unique homogeneous polynomial $g_0$ of degree $d$ with $K\subset G_1(g_0)=\{x\in\mathbb R^n:g_0(x)\leq 1\}$ minimizing $|G_1(g)|$ among all such polynomials $g$ fulfilling the condition $K\subset G_1(g)$. This result extends the notion of the Löwner ellipsoid, not only from convex bodies to arbitrary compact sets (which was immediate if $d=2$ by taking convex hulls), but also from ellipsoids to level sets of homogeneous polynomial of an arbitrary even degree. In this paper we extend this result for the class of non-negative log-concave functions in two different ways. One of them is the straightforward extension of the known results, and the other one is a suitable extension with uniqueness of the solution in the corresponding problem and a characterization in terms of some 'contact points'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源