论文标题
使用石墨烯的光学相变材料的多级电热切换
Multi-level Electro-thermal Switching of Optical Phase-Change Materials Using Graphene
论文作者
论文摘要
最少功耗的可重构光子系统对于现实世界中的集成光学设备至关重要。但是,铸造厂中可用的当前有源设备使用挥发性方法来调节光线,需要持续的功率供应和重要的形式。克服这些问题的基本方面是开发非易失性光学重新配置技术,这些技术与与不同的光子平台的芯片集成兼容,并且不会破坏其光学性能。在本文中,使用光电框架来证明解决方案,用于非挥发性可调光子学,该框架采用未悬而未决的透明烯微型脱酮来热和可逆地切换光相位更换材料ge $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ SE $ _4 $ _4 $ _1 $ _1 $ _1 $(GSST)。一种原位拉曼光谱法用于实时证明在四个不同水平的结晶度之间可逆切换。此外,开发了一个3D计算模型,以精确解释开关特性,并量化当前饱和度对功率耗散,热扩散和开关速度的影响。该模型用于告知非易失性活性光子设备的设计;也就是说,宽带SI $ _3 $ n $ _4 $集成光子电路与小型因子调节器和可重新配置的元图显示2 $π$相位覆盖,这是通过神经网络设计的GSST Meta-Otoms。该框架将在各种光子平台上启用可扩展的,低损坏的非易失性应用程序。
Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a constant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfiguration techniques which are compatible with on-chip integration with different photonic platforms and do not disrupt their optical performances. In this paper, a solution is demonstrated using an optoelectronic framework for nonvolatile tunable photonics that employs undoped-graphene microheaters to thermally and reversibly switch the optical phase-change material Ge$_2$Sb$_2$Se$_4$Te$_1$ (GSST). An in-situ Raman spectroscopy method is utilized to demonstrate, in real-time, reversible switching between four different levels of crystallinity. Moreover, a 3D computational model is developed to precisely interpret the switching characteristics, and to quantify the impact of current saturation on power dissipation, thermal diffusion, and switching speed. This model is used to inform the design of nonvolatile active photonic devices; namely, broadband Si$_3$N$_4$ integrated photonic circuits with small form-factor modulators and reconfigurable metasurfaces displaying 2$π$ phase coverage through neural-network-designed GSST meta-atoms. This framework will enable scalable, low-loss nonvolatile applications across a diverse range of photonics platforms.