论文标题
选择性推断添加剂和线性混合模型
Selective Inference for Additive and Linear Mixed Models
论文作者
论文摘要
这项工作解决了模型选择后对添加剂和线性混合模型进行有效推断的问题。在模型选择之后,一个可能克服过度自信推理结果的解决方案是选择性推理,该推断构成了选择后推理框架,通过在选择事件的条件下通过调节来产生有效的推理语句。对于任何类型的模型选择机制,我们将有关选择性推断的最新工作扩展到可以作为结果变量的函数表示的任何类型的模型选择机制(以及可能在其条件下的协变量上)。我们在模拟研究中调查了提案的特性,并将框架应用于货币经济学中的数据。由于我们提出的方法的普遍性,提出的方法也适用于我们在应用中证明的非标准选择程序。在这里,最终的加性混合模型是使用层次选择过程选择的,该过程基于条件Akaike信息标准,涉及不同的数据集大小。
This work addresses the problem of conducting valid inference for additive and linear mixed models after model selection. One possible solution to overcome overconfident inference results after model selection is selective inference, which constitutes a post-selection inference framework, yielding valid inference statements by conditioning on the selection event. We extend recent work on selective inference to the class of additive and linear mixed models for any type of model selection mechanism that can be expressed as a function of the outcome variable (and potentially on covariates on which it conditions). We investigate the properties of our proposal in simulation studies and apply the framework to a data set in monetary economics. Due to the generality of our proposed approach, the presented approach also works for non-standard selection procedures, which we demonstrate in our application. Here, the final additive mixed model is selected using a hierarchical selection procedure, which is based on the conditional Akaike information criterion and involves varying data set sizes.