论文标题

通过量子环形图观察量子临界金属中的非Fermi液体物理

Observation of non-Fermi liquid physics in a quantum critical metal via quantum loop topography

论文作者

George, Driskell, Lederer, Samuel, Bauer, Carsten, Trebst, Simon, Kim, Eun-Ah

论文摘要

非Furmi液体物理学是密切相关的金属中无处不在的特征,它以异常的传输特性表现出来,例如实验中的$ T $线性电阻率。但是,尽管数十年的概念性工作和尝试的数值模拟,但仍缺乏在微观模型方面的理论理解。在这里,我们证明,符号无问题的量子蒙特卡洛采样和量子环形形貌,一种由物理启发的机器学习方法,可以绘制出量子关键点附近非fermi液体物理物理学的出现,而先前的知识很少。仅使用三个参数点来训练潜在的神经网络,我们能够在旋转密度波和列表的开始时可重复地识别稳定的非Fermi液体状态,以追踪金属量子临界点的粉丝。因此,我们的研究提供了一个重要的原理证明例子,即可以通过无偏的机器学习方法检测到新物理学。

Non-Fermi liquid physics is a ubiquitous feature in strongly correlated metals, manifesting itself in anomalous transport properties, such as a $T$-linear resistivity in experiments. However, its theoretical understanding in terms of microscopic models is lacking despite decades of conceptual work and attempted numerical simulations. Here we demonstrate that a combination of sign problem-free quantum Monte Carlo sampling and quantum loop topography, a physics-inspired machine learning approach, can map out the emergence of non-Fermi liquid physics in the vicinity of a quantum critical point with little prior knowledge. Using only three parameter points for training the underlying neural network, we are able to reproducibly identify a stable non-Fermi liquid regime tracing the fan of a metallic quantum critical points at the onset of both spin-density wave and nematic order. Our study thereby provides an important proof-of-principle example that new physics can be detected via unbiased machine-learning approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源