论文标题

Ma-Minda Starlikeness的半径问题

Radii problems for Ma-Minda Starlikeness

论文作者

Gangania, Kamaljeet, Kumar, S. Sivaprasad

论文摘要

对于标准的ma-minda类$ \ Mathcal {s}^{*}(ψ)$的单价函数,我们将$ \ Mathcal {s}^{*}^{*}(ψ)(ψ)$ - radii用于一些知名的特殊功能。此外,我们获得了经典问题的极端功能集 $ \ max_ {f \ in \ mathcal {s}^{*}(ψ)}^{}^{} \ left |φ\ left(\ log {(f(z)/z)/z)/z)} \ right)\ right | \ quad \ text {或} \ quad \ max_ {f \ in \ mathcal {s}^{*}(ψ)}^{}^{} \ rec = \ left(\ log {(f(z)/z)/z)/z)} \ right),$φ$ where $φ$ wher此外,我们证明了$ψ(\ mathbb {d})$ starlike时的卷积和半径估计的某些结果。

For the standard Ma-Minda class $\mathcal{S}^{*}(ψ)$ of univalent starlike functions, we derive $\mathcal{S}^{*}(ψ)$-radii for some well-known special functions. In addition, we obtain the set of extremal functions for the classical problem $$\max_{f\in \mathcal{S}^{*}(ψ)}^{}\left|Φ\left(\log{(f(z)/z)}\right)\right| \quad \text{or} \quad \max_{f\in \mathcal{S}^{*}(ψ)}^{}\ReΦ\left(\log{(f(z)/z)}\right),$$ where $Φ$ is a non-constant entire function. Moreover, we prove certain results on convolution and radius estimates for the case when $ψ(\mathbb{D})$ is starlike.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源