论文标题
一维翻译不变的自由行式耗散系统的谎言代数方法
Lie-algebraic approach to one-dimensional translationally invariant free-fermionic dissipative systems
论文作者
论文摘要
我们研究了具有二次liouvillians的耗散性翻译自由花费理论。使用Lie-elgebraic方法,我们求解Lindblad方程,并始终找到Liouvillian任意时间依赖性的密度矩阵。然后,我们研究了liouvillian光谱特性,并得出了闭合耗散间隙的通用标准,据信这与非平衡耗散相变相关。我们用一些异国情调的例子说明了我们的发现。尤其是,我们显示了具有线性光谱的无间隙模式的存在,用于远程跳跃的费米子,这可能与非统一的保形场理论有关。可以使用当前可用的实验设施在超电原子和量子光系统的实验中探测预测的效果。
We study dissipative translationally invariant free-fermionic theories with quadratic Liouvillians. Using a Lie-algebraic approach, we solve the Lindblad equation and find the density matrix at all times for arbitrary time dependence of the Liouvillian. We then investigate the Liouvillian spectral properties and derive a generic criterion for the closure of the dissipative gap, which is believed to be linked with nonequilibrium dissipative phase transitions. We illustrate our findings with a few exotic examples. Particularly, we show the presence of gapless modes with a linear spectrum for fermions with long-range hopping, which might be related to nonunitary conformal field theories. The predicted effects can be probed in experiments with ultracold atomic and quantum-optical systems using currently available experimental facilities.