论文标题

聚焦和扩展:通过逐步操纵输入功能的培训指导

Focus-and-Expand: Training Guidance Through Gradual Manipulation of Input Features

论文作者

Arar, Moab, Fish, Noa, Daniel, Dani, Tenetov, Evgeny, Shamir, Ariel, Bermano, Amit

论文摘要

我们提出了一种简单,直观的焦点和扩展方法(\ FAX)方法,用于指导神经网络的训练过程对特定解决方案。优化神经网络是一个高度非凸的问题。通常,解决方案的空间很大,具有许多可能的局部最小值,其中达到特定最小值取决于许多因素。但是,在许多情况下,需要一种考虑输入的特定方面或特征的解决方案。例如,在存在偏见的情况下,忽略偏置特征的解决方案是一种更强大,更准确的解决方案。从参数持续方法中汲取灵感,我们建议通过输入域的逐步转移来指导训练过程,以比其他训练更多的是输入中的特定特征。 \传真从每个输入数据点提取一个特征的子集,并首先将学习者暴露于这些功能,将解决方案集中在它们上。然后,通过使用混合/混合参数$α$,它逐渐扩展了学习过程,以包括输入的所有功能。这个过程比其他过程更多地鼓励考虑所需功能。尽管不限于这一领域,但我们定量评估了方法对各种计算机视觉任务的有效性,并实现了最新的偏见删除,改进了已建立的增强方法,以及对图像分类任务改进的两个示例。通过这几个示例,我们证明了这种方法可能带来各种各样的问题,这些问题将从理解解决方案景观中获得。

We present a simple and intuitive Focus-and-eXpand (\fax) method to guide the training process of a neural network towards a specific solution. Optimizing a neural network is a highly non-convex problem. Typically, the space of solutions is large, with numerous possible local minima, where reaching a specific minimum depends on many factors. In many cases, however, a solution which considers specific aspects, or features, of the input is desired. For example, in the presence of bias, a solution that disregards the biased feature is a more robust and accurate one. Drawing inspiration from Parameter Continuation methods, we propose steering the training process to consider specific features in the input more than others, through gradual shifts in the input domain. \fax extracts a subset of features from each input data-point, and exposes the learner to these features first, Focusing the solution on them. Then, by using a blending/mixing parameter $α$ it gradually eXpands the learning process to include all features of the input. This process encourages the consideration of the desired features more than others. Though not restricted to this field, we quantitatively evaluate the effectiveness of our approach on various Computer Vision tasks, and achieve state-of-the-art bias removal, improvements to an established augmentation method, and two examples of improvements to image classification tasks. Through these few examples we demonstrate the impact this approach potentially carries for a wide variety of problems, which stand to gain from understanding the solution landscape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源