论文标题

内在磁性拓扑绝缘子的轨道复杂性MNBI $ _4 $ TE $ _7 $和MNBI $ _6 $ TE $ _ {10} $

Orbital Complexity in Intrinsic Magnetic Topological Insulators MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$

论文作者

Vidal, R. C., Bentmann, H., Facio, J. I., Heider, T., Kagerer, P., Fornari, C. I., Peixoto, T. R. F., Figgemeier, T., Jung, S., Cacho, C., Büchner, B., Brink, J. van den, Schneider, C. M., Plucinski, L., Schwier, E. F., Shimada, K., Richter, M., Isaeva, A., Reinert, F.

论文摘要

使用角度分辨的光电子光谱(ARPES),我们研究了磁性范德华的表面电子结构MNBI $ _4 $ _4 $ _4 $ te $ _7 $和mnbi $ _6 $ _6 $ _6 $ _ te $ _ {10} $,$ n = $ n = $ 〜1和2 (Bi $ _2 $ TE $ _3 $)$ _ N $(MNBI $ _2 $ TE $ _4 $)系列,这些系列引起了最近作为固有的磁性拓扑拓扑器的兴趣。通过密度功能理论的计算,将圆形二色性,自旋分辨率和光子能量依赖性ARPE的测量结合在一起,我们在表面电子结构中揭示了依赖的轨道和自旋质地,以及与小动物表面波段的旋转质地。我们发现,拓扑表面状态的狄拉克锥分散体与Valence-band状态的Bi $ _2 $ _2 $ _3 $ _3 $端端的表面对MNBI $ _2 $ _2 $ _4 $ _4 $ _4 $ termented-terminated-terminated-terminated表面都保留。我们的结果牢固地建立了这些磁性范德华材料的拓扑性质性质,并表明实现量化异常的霍尔电导率的可能性取决于表面终止。

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$, the $n=$~1 and 2 members of a modular (Bi$_2$Te$_3$)$_n$(MnBi$_2$Te$_4$) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi$_2$Te$_3$-terminated surfaces but remains preserved for MnBi$_2$Te$_4$-terminated surfaces. Our results firmly establish the topologically non-trivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源