论文标题

机器人匹配:递归最近邻居搜索的社交机器人检测

Bot-Match: Social Bot Detection with Recursive Nearest Neighbors Search

论文作者

Beskow, David M., Carley, Kathleen M.

论文摘要

在过去的十年中,社会机器人出现了,最初引起了麻烦,而最近又用来恐吓记者,摇摆选举事件并加剧现有的社会裂痕。这种社会威胁产生了一个机器人检测算法竞赛,其中检测算法的发展是为了跟上日益复杂的机器人帐户。该猫和鼠标周期阐明了监督机器学习算法的局限性,研究人员试图使用昨天的数据来预测明天的机器人。这一差距意味着研究人员,记者和分析师每天都会确定未经最先进的机器人检测算法未发现的恶意机器人帐户。这些分析师通常希望在不标记/培训新模型的情况下找到相似的机器人帐户,在这种模型中可以通过内容,网络位置或两者兼而有之。基于相似性的算法可以补充现有的监督和无监督的方法,并填补此空白。为此,我们介绍了机器人匹配方法论,其中我们评估了社交媒体的嵌入,使社交媒体的嵌入能够使半监督的递归最近邻居搜索以绘制一个或多个种子帐户的新兴社交网络安全威胁。

Social bots have emerged over the last decade, initially creating a nuisance while more recently used to intimidate journalists, sway electoral events, and aggravate existing social fissures. This social threat has spawned a bot detection algorithms race in which detection algorithms evolve in an attempt to keep up with increasingly sophisticated bot accounts. This cat and mouse cycle has illuminated the limitations of supervised machine learning algorithms, where researchers attempt to use yesterday's data to predict tomorrow's bots. This gap means that researchers, journalists, and analysts daily identify malicious bot accounts that are undetected by state of the art supervised bot detection algorithms. These analysts often desire to find similar bot accounts without labeling/training a new model, where similarity can be defined by content, network position, or both. A similarity based algorithm could complement existing supervised and unsupervised methods and fill this gap. To this end, we present the Bot-Match methodology in which we evaluate social media embeddings that enable a semi-supervised recursive nearest neighbors search to map an emerging social cybersecurity threat given one or more seed accounts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源