论文标题
在llsvs品种的未释放的Voisin Divisor上
On the uniruled Voisin divisor on the LLSvS variety
论文作者
论文摘要
让$ y $成为平滑的立方四倍,$ f $是其fano种类的品种,$ z $是其相关的llsvs品种,参数化扭曲立方体的家族及其某些退化。在此简短说明中,我们表明,$ z $上的单一立方体表面的除数具有两个不可约的组件,其中一个与未释放的分支分支机构相吻合的voisin map $ f \ times f \ times f \ times f \ dashrightarrow z $。
Let $Y$ be a smooth cubic fourfold, $F$ be its Fano variety of lines and $Z$ be its associated LLSvS variety, parametrizing families of twisted cubics and some of their degenerations. In this short note, we show that the divisor of singular cubic surfaces on $Z$ has two irreducible components, one of which coincides with the uniruled branch divisor of a resolution of the Voisin map $F\times F \dashrightarrow Z$.