论文标题

准确模拟强场中相对论颗粒的九维相空间

Accurately simulating nine-dimensional phase space of relativistic particles in strong fields

论文作者

Li, Fei, Decyk, Viktor K., Miller, Kyle G., Tableman, Adam, Tsung, Frank S., Vranic, Marija, Fonseca, Ricardo A., Mori, Warren B.

论文摘要

可以专注于超过10^23 W/cm^2的强度的下一代高功率激光器正在实现新的物理和应用。这些激光与物质相互作用的物理学是高度非线性的,相对论的,并且可能涉及最低阶量子效应。建模这些相互作用的当前选择工具是粒子中的粒子(PIC)方法。在强场中,带电颗粒的运动及其自旋受辐射反应的影响。标准的PIC代码通常使用鲍里斯或其变体来推进颗粒,这需要在强场上进行非常小的时间步骤才能获得准确的结果。此外,有些问题需要跟踪颗粒的自旋,这会产生9D粒子相空间(x,u,s)。因此,需要在强场状态下对9D相空间进行高保真建模的数值算法。我们基于分析溶液来提出一个新的9D相空间粒子推动器,从洛伦兹力的位置,动量和旋转前进,以及在Landau-Lifshitz方程中的RR的半古典形式以及由Bargmann-Michel-Michel-Michel-Michel-Michel-Michel-Michel-telegdi方程式给出的旋转。这些分析溶液是通过假设在一个时间步骤中假设局部均匀且恒定的电磁场获得的。该解决方案可根据粒子的适当时间提供9D相空间的前进,并使用映射来确定每个粒子从仿真时间步骤确定每个粒子的适当时间步。由于分析积分,可以大大减少解决超高场中解决轨迹所需的时间步长的限制。我们提供单粒子模拟和完整的PIC模拟,以表明所提出的粒子推动器可以大大提高给定激光场在9D相空间中粒子轨迹的准确性。还提供了有关拟议推杆的数值效率的讨论。

Next-generation high-power lasers that can be focused to intensities exceeding 10^23 W/cm^2 are enabling new physics and applications. The physics of how these lasers interact with matter is highly nonlinear, relativistic, and can involve lowest-order quantum effects. The current tool of choice for modeling these interactions is the particle-in-cell (PIC) method. In strong fields, the motion of charged particles and their spin is affected by radiation reaction. Standard PIC codes usually use Boris or its variants to advance the particles, which requires very small time steps in the strong-field regime to obtain accurate results. In addition, some problems require tracking the spin of particles, which creates a 9D particle phase space (x, u, s). Therefore, numerical algorithms that enable high-fidelity modeling of the 9D phase space in the strong-field regime are desired. We present a new 9D phase space particle pusher based on analytical solutions to the position, momentum and spin advance from the Lorentz force, together with the semi-classical form of RR in the Landau-Lifshitz equation and spin evolution given by the Bargmann-Michel-Telegdi equation. These analytical solutions are obtained by assuming a locally uniform and constant electromagnetic field during a time step. The solutions provide the 9D phase space advance in terms of a particle's proper time, and a mapping is used to determine the proper time step for each particle from the simulation time step. Due to the analytical integration, the constraint on the time step needed to resolve trajectories in ultra-high fields can be greatly reduced. We present single-particle simulations and full PIC simulations to show that the proposed particle pusher can greatly improve the accuracy of particle trajectories in 9D phase space for given laser fields. A discussion on the numerical efficiency of the proposed pusher is also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源