论文标题

通过机器学习加速反向晶体结构预测:碳同素异形的案例研究

Accelerating inverse crystal structure prediction by machine learning: a case study of carbon allotropes

论文作者

Tong, Wen, Wei, Qun, Yan, Haiyan, Zhang, Meiguang, Zhu, Xuanmin

论文摘要

基于结构预测方法,使用机器学习方法代替密度函数理论(DFT)方法来预测材料属性,从而加速了材料搜索过程。在本文中,我们通过高通量计算建立了一个碳材料的数据集,并从萨马拉碳同素同素数据库中获得的可用碳结构。然后,我们训练了一个ML模型,该模型专门预测了弹性模量(散装模量,剪切模量和杨氏模量),并确认准确性比预测碳同素异晶弹性模量的Aflow-ML更好。我们将ML模型与Calypso代码相结合,以搜索具有高年轻模量的新碳结构。首先揭示了一种名为CMCM-C24的萨马拉碳同素同素数据库中未包含的新碳同素同素异形体,该数据库的硬度大于80 GPA。 CMCM-C24相被鉴定为具有直接带隙的半导体。系统地研究了新碳同质量的结构稳定性,弹性模量和电子性能,并且获得的结果证明了ML方法加速材料搜索过程的可行性。

Based on structure prediction method, the machine learning method is used instead of the density function theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained an ML model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young's modulus) and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young's modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm-C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源