论文标题

用于集成对等点乘车共享和基于计划的运输系统的算法

An algorithm for integrating peer-to-peer ridesharing and schedule-based transit system for first mile/last mile access

论文作者

Kumar, Pramesh, Khani, Alireza

论文摘要

由于运输网络的覆盖范围有限和服务很少,因此郊区通勤者通常会面临运输第一英里/最后一英里(FMLM)问题。为了解决这个问题,他们要么开车去公园乘车地点进行过境,使用拼车或直接开车到目的地以避免给您带来不便。乘车场是一种新兴的运输方式,可以解决过境第一英里/最后一英里问题。在此设置中,驾驶员可以将寻求骑行者驾驶到运输站,从那里骑手可以运输到她各自的目的地。这个问题需要解决骑手在多模式运输网络中的路由解决乘车匹配问题。我们开发了一种基于运输的乘车分机匹配算法来解决此问题。该方法利用基于计划的运输最短路径来生成可行的匹配,然后解决匹配的优化程序,以找到骑手和驾驶员之间的最佳匹配。提出的方法不仅为骑手分配了最佳驱动程序,而且还为骑手的其余行程分配了最佳的过境停止和从该停靠站出发的运输车辆。我们还介绍了时空棱镜(STP)的应用(STP)(可以通过时间限制的旅行者可以到达的地理区域)在乘车共享的背景下通过减少网络搜索来减少计算时间。还提出了一种使用滚动范围方法动态解决此问题的算法。我们使用从双城的基于活动的旅行需求模型获得的模拟数据,以表明基于运输的乘车共享可以解决FMLM问题并节省系统中花费的大量车时。

Due to limited transit network coverage and infrequent service, suburban commuters often face the transit first mile/last mile (FMLM) problem. To deal with this, they either drive to a park-and-ride location to take transit, use carpooling, or drive directly to their destination to avoid inconvenience. Ridesharing, an emerging mode of transportation, can solve the transit first mile/last mile problem. In this setup, a driver can drive a ride-seeker to a transit station, from where the rider can take transit to her respective destination. The problem requires solving a ridesharing matching problem with the routing of riders in a multimodal transportation network. We develop a transit-based ridesharing matching algorithm to solve this problem. The method leverages the schedule-based transit shortest path to generate feasible matches and then solves a matching optimization program to find an optimal match between riders and drivers. The proposed method not only assigns an optimal driver to the rider but also assigns an optimal transit stop and a transit vehicle trip departing from that stop for the rest of the rider's itinerary. We also introduce the application of space-time prism (STP) (the geographical area which can be reached by a traveler given the time constraints) in the context of ridesharing to reduce the computational time by reducing the network search. An algorithm to solve this problem dynamically using a rolling horizon approach is also presented. We use simulated data obtained from the activity-based travel demand model of Twin Cities, MN to show that the transit-based ridesharing can solve the FMLM problem and save a significant number of vehicle-hours spent in the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源