论文标题

基于内容的广播电台的建议,具有深度学习的音频指纹

Content-based Recommendations for Radio Stations with Deep Learned Audio Fingerprints

论文作者

Langer, Stefan, Obermeier, Liza, Ebert, André, Friedrich, Markus, Munisamy, Emma, Linnhoff-Popien, Claudia

论文摘要

线性无线电广播的世界的特征是各种各样的电台和播放内容。这就是为什么寻找播放首选内容的电台对于潜在的听众来说是一项艰巨的任务,尤其是由于提供的选择数量压倒了。在这里,推荐系统通常介入,但现有的基于内容的方法依赖于元数据,因此受到可用数据质量的约束。其他方法利用用户行为数据,因此不会利用任何特定领域的知识,并且在隐私问题上也是不利的。因此,我们提出了一条新的管道,用于生成基于音频的广播电台指纹,以依靠音频流爬行和深层自动编码器。我们表明,所提出的指纹对于通过其音频内容来表征广播电台特别有用,因此是有意义且可靠的广播电台建议的绝佳代表。此外,提出的模块是Hradio通信平台的一部分,该平台可以使混合无线电功能能够到达广播电台。它具有灵活的开源许可证,并尤其是中小型企业,可以为潜在的听众提供定制和高质量的广播服务。

The world of linear radio broadcasting is characterized by a wide variety of stations and played content. That is why finding stations playing the preferred content is a tough task for a potential listener, especially due to the overwhelming number of offered choices. Here, recommender systems usually step in but existing content-based approaches rely on metadata and thus are constrained by the available data quality. Other approaches leverage user behavior data and thus do not exploit any domain-specific knowledge and are furthermore disadvantageous regarding privacy concerns. Therefore, we propose a new pipeline for the generation of audio-based radio station fingerprints relying on audio stream crawling and a Deep Autoencoder. We show that the proposed fingerprints are especially useful for characterizing radio stations by their audio content and thus are an excellent representation for meaningful and reliable radio station recommendations. Furthermore, the proposed modules are part of the HRADIO Communication Platform, which enables hybrid radio features to radio stations. It is released with a flexible open source license and enables especially small- and medium-sized businesses, to provide customized and high quality radio services to potential listeners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源