论文标题

通过logit调整长尾学习

Long-tail learning via logit adjustment

论文作者

Menon, Aditya Krishna, Jayasumana, Sadeep, Rawat, Ankit Singh, Jain, Himanshu, Veit, Andreas, Kumar, Sanjiv

论文摘要

现实世界的分类问题通常表现出不平衡或长尾标签的分布,其中许多标签仅与几个样本相关联。这对此类标签构成了一个挑战,也使幼稚的学习偏向于主导标签。在本文中,我们介绍了标准软磁体横向培训的两种简单修改,以应对这些挑战。我们的技术基于标签频率(将事后应用于训练的模型应用于训练的模型,或在训练期间执行损失。这种调整促进了稀有标签与优势标签的逻辑之间的较大相对边缘。这些技术在文献中统一并概括了最近的一些建议,同时具有更牢固的统计基础和经验表现。

Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels are associated with only a few samples. This poses a challenge for generalisation on such labels, and also makes naïve learning biased towards dominant labels. In this paper, we present two simple modifications of standard softmax cross-entropy training to cope with these challenges. Our techniques revisit the classic idea of logit adjustment based on the label frequencies, either applied post-hoc to a trained model, or enforced in the loss during training. Such adjustment encourages a large relative margin between logits of rare versus dominant labels. These techniques unify and generalise several recent proposals in the literature, while possessing firmer statistical grounding and empirical performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源