论文标题
非IID推荐系统:推荐范式的审查和框架移动
Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting
论文作者
论文摘要
尽管建议在我们的生活,学习,工作和娱乐中起越来越重要的作用,但我们收到的建议通常是针对无关紧要,重复或无趣的产品和服务的。如此不好建议的一个关键原因在于,在现有理论和系统中推荐的用户和项目是独立的,并且分布式分布(IID)。另一个现象是,尽管已经为建模用户或项目的特定方面做出了巨大的努力,但总体用户和项目特征及其非iids被忽略了。在本文中,讨论了推荐的非IID性质和特征,然后是非IID理论框架,以从耦合和异质性的角度来建立对建议问题的内在性质的深刻而全面的理解。这项非IID建议研究触发了从IID到非IID建议研究的范式转变,并有望提供知情,相关,个性化和可行的建议。它创建了令人兴奋的新方向和基本解决方案,以解决各种复杂性,包括冷启动,基于数据的稀疏,跨域,基于组和先令攻击相关的问题。
While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and services. A critical reason for such bad recommendations lies in the intrinsic assumption that recommended users and items are independent and identically distributed (IID) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-IID nature and characteristics of recommendation are discussed, followed by the non-IID theoretical framework in order to build a deep and comprehensive understanding of the intrinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-IID recommendation research triggers the paradigm shift from IID to non-IID recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.