论文标题
马赛克:通过有条件图像检索找到跨文化的艺术联系
MosAIc: Finding Artistic Connections across Culture with Conditional Image Retrieval
论文作者
论文摘要
我们介绍了Mosaic,这是一种交互式Web应用程序,允许用户找到跨越不同文化,媒体和千年的语义相关的艺术品。为了创建此应用程序,我们介绍了有条件的图像检索(CIR),该图像将视觉相似性搜索与用户提供的过滤器或“条件”结合在一起。该技术允许人们找到跨越图像语料库不同子集的相似图像对。我们提供了一种将现有图像检索数据结构调整到该新领域的通用方法,并为我们的方法的效率提供理论界限。为了量化CIR系统的性能,我们介绍了用于评估CIR方法的新数据集,并表明CIR执行非参数样式转移。最后,我们证明我们的CIR数据结构可以识别生成对抗网络(GAN)中的“盲点”,在这些网络中,它们无法正确地对真实的数据分布进行建模。
We introduce MosAIc, an interactive web app that allows users to find pairs of semantically related artworks that span different cultures, media, and millennia. To create this application, we introduce Conditional Image Retrieval (CIR) which combines visual similarity search with user supplied filters or "conditions". This technique allows one to find pairs of similar images that span distinct subsets of the image corpus. We provide a generic way to adapt existing image retrieval data-structures to this new domain and provide theoretical bounds on our approach's efficiency. To quantify the performance of CIR systems, we introduce new datasets for evaluating CIR methods and show that CIR performs non-parametric style transfer. Finally, we demonstrate that our CIR data-structures can identify "blind spots" in Generative Adversarial Networks (GAN) where they fail to properly model the true data distribution.