论文标题

具有动态反馈增益选择和折现概率约束的随机MPC

Stochastic MPC with Dynamic Feedback Gain Selection and Discounted Probabilistic Constraints

论文作者

Yan, Shuhao, Goulart, Paul J., Cannon, Mark

论文摘要

本文考虑了带有添加性干扰的线性离散时间系统,并设计了模型预测控制(MPC)定律,该定律结合了动态反馈增益,以最大程度地减少二次成本函数,但要受单个机会约束。反馈收益是在线选择的,我们提供两种选择方法,基于最大程度地减少预测成本的上限。机会限制定义为无限视野上的违规概率的打折总和。通过惩罚接近初始时间的违规概率,并以消失的重量消失的未来分配违规概率,这种约束形式允许制定MPC法律,并保证递归可行性,而无需对干扰的界定假设。使用Chebyshev的不平等问题提出了计算方便的MPC优化问题,我们引入了一种在线约束密码技术,以确保递归可行性。闭环系统可以确保满足机会限制和二次稳定条件。随着动态反馈增益的选择,闭环成本降低了,而Chebyshev的不平等现象的保守性得到了减轻。同样,可以获得更大的可行初始条件。给出数值模拟以显示这些结果。

This paper considers linear discrete-time systems with additive disturbances, and designs a Model Predictive Control (MPC) law incorporating a dynamic feedback gain to minimise a quadratic cost function subject to a single chance constraint. The feedback gain is selected online and we provide two selection methods based on minimising upper bounds on predicted costs. The chance constraint is defined as a discounted sum of violation probabilities on an infinite horizon. By penalising violation probabilities close to the initial time and assigning violation probabilities in the far future with vanishingly small weights, this form of constraints allows for an MPC law with guarantees of recursive feasibility without a boundedness assumption on the disturbance. A computationally convenient MPC optimisation problem is formulated using Chebyshev's inequality and we introduce an online constraint-tightening technique to ensure recursive feasibility. The closed loop system is guaranteed to satisfy the chance constraint and a quadratic stability condition. With dynamic feedback gain selection, the closed loop cost is reduced and conservativeness of Chebyshev's inequality is mitigated. Also, a larger feasible set of initial conditions can be obtained. Numerical simulations are given to show these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源