论文标题

拓扑rényi熵的半经典限制为$ 3D $ CHERN-SIMONS理论

Semiclassical limit of topological Rényi entropy in $3d$ Chern-Simons theory

论文作者

Dwivedi, Siddharth, Singh, Vivek Kumar, Roy, Abhishek

论文摘要

我们研究了与三维SU(2)$ _ k $ Chern-Simons理论的设置中的状态的多边界纠缠结构$ s^3 \ backslash t_ {p,q} $。这项工作的焦点是rényi熵的渐近行为,包括纠缠熵,在$ k \ to \ infty $的半经典极限下。我们为多个圆环链接提供了详细的分析,并观察到熵在半经典限制中收敛到有限值。我们进一步建议,$ t of $ t_ {p,pn} $的rényi熵的大型$ k $限制值是两个部分的总和:(i)独立于$ n $的通用部分,以及(ii)非近语或链接零件,明确依赖于链接数字$ n $ n $。使用分析技术,我们表明了普遍的部分由Riemann Zeta函数组成,并且可以根据二维拓扑扬米尔斯理论的分区函数编写。更确切地说,它等于用SU(2)仪表组制备的某些状态的Rényi熵。此外,可以根据某些Riemann表面上平坦的连接的模量空间来解释纠缠熵的大$ K $限制的通用零件。我们还分析了$ t_ {p,pn} $ link的rényi熵,在$ k \ to \ infty $的双缩放限制中,$ n \ to \ infty $,并提出熵也会在双重限制中收敛。

We study the multi-boundary entanglement structure of the state associated with the torus link complement $S^3 \backslash T_{p,q}$ in the set-up of three-dimensional SU(2)$_k$ Chern-Simons theory. The focal point of this work is the asymptotic behavior of the Rényi entropies, including the entanglement entropy, in the semiclassical limit of $k \to \infty$. We present a detailed analysis for several torus links and observe that the entropies converge to a finite value in the semiclassical limit. We further propose that the large $k$ limiting value of the Rényi entropy of torus links of type $T_{p,pn}$ is the sum of two parts: (i) the universal part which is independent of $n$, and (ii) the non-universal or the linking part which explicitly depends on the linking number $n$. Using the analytic techniques, we show that the universal part comprises of Riemann zeta functions and can be written in terms of the partition functions of two-dimensional topological Yang-Mills theory. More precisely, it is equal to the Rényi entropy of certain states prepared in topological $2d$ Yang-Mills theory with SU(2) gauge group. Further, the universal parts appearing in the large $k$ limits of the entanglement entropy and the minimum Rényi entropy for torus links $T_{p,pn}$ can be interpreted in terms of the volume of the moduli space of flat connections on certain Riemann surfaces. We also analyze the Rényi entropies of $T_{p,pn}$ link in the double scaling limit of $k \to \infty$ and $n \to \infty$ and propose that the entropies converge in the double limit as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源