论文标题
不确定的数据信封分析:盒子不确定性
Uncertain Data Envelopment Analysis: Box Uncertainty
论文作者
论文摘要
数据包络分析(DEA)是一种非参数,数据驱动的技术,用于在一组可比决策单位(DMU)之间进行相对性能分析。通过线性编程比较每个DMU的输入和输出数据来评估效率。传统上,在DEA中,数据被认为是准确的。但是,在许多实际应用中,分析中使用的输入数据和输出数据的值可能不精确。为了解决这个问题,我们为盒子不确定性而发展了不确定的DEA问题。我们介绍了DEA距离的概念,以确定DMU认为有效的最小不确定性。对于小问题,可以精确地发现最小的不确定性,对于更大的问题,这在计算中变得很密集。因此,我们提出了一种迭代方法,其中不确定性逐渐增加。这会导致可有效解决的强大DEA问题。这项不确定性的研究是由肿瘤学中放射治疗计划过程的固有不确定性质的动机。我们应用方法来评估相对于彼此的一组前列腺癌放射治疗计划的质量。
Data Envelopment Analysis (DEA) is a nonparametric, data driven technique used to perform relative performance analysis among a group of comparable decision making units (DMUs). Efficiency is assessed by comparing input and output data for each DMU via linear programming. Traditionally in DEA, the data are considered to be exact. However, in many real-world applications, it is likely that the values for the input and output data used in the analysis are imprecise. To account for this, we develop the uncertain DEA problem for the case of box uncertainty. We introduce the notion of DEA distance to determine the minimum amount of uncertainty required for a DMU to be deemed efficient. For small problems, the minimum amount of uncertainty can be found exactly, for larger problems this becomes computationally intensive. Therefore, we propose an iterative method, where the amount of uncertainty is gradually increased. This results in a robust DEA problem that can be solved efficiently. This study of uncertainty is motivated by the inherently uncertain nature of the radiotherapy treatment planning process in oncology. We apply the method to evaluate the quality of a set of prostate cancer radiotherapy treatment plans relative to each other.