论文标题

通过自我发现,自我分类和自我纠正来学习语义增强的表示

Learning Semantics-enriched Representation via Self-discovery, Self-classification, and Self-restoration

论文作者

Haghighi, Fatemeh, Taher, Mohammad Reza Hosseinzadeh, Zhou, Zongwei, Gotway, Michael B., Liang, Jianming

论文摘要

医学图像自然与关于人体解剖学的丰富语义相关,反映了大量的反复解剖模式,提供了独特的潜力,可以促进深层语义表示学习,并为不同的医学应用产生语义上更强大的模型。但是,如何利用嵌入在医学图像中的如此强大而自由的语义可以得到自我监督的学习,这在很大程度上尚未得到探索。为此,我们通过自发现,自我分类和对医学图像下的解剖结构进行自我纠正学习语义丰富的视觉表示,从而学习了语义增强的,富含语义的,通用的,通用的,预先训练的3D模型,名为Sminantic Genantic Genation。我们通过自学或完全监督的所有公共可用预训练的模型检查了我们的语义创世纪,以六个不同的目标任务(即CT,MRI和X射线)涵盖分类和分割。我们的广泛实验表明,语义发生显着超过了其所有3D对应物以及2D中基于Imagenet的事实传递学习。这种表现归因于我们新颖的自学学习框架,鼓励深层模型从嵌入医学图像中的一致的解剖学产生的丰富解剖学模式中学习引人注目的语义表示。代码和预训练的语义创世纪可在https://github.com/jlianglab/semanticgenesis中找到。

Medical images are naturally associated with rich semantics about the human anatomy, reflected in an abundance of recurring anatomical patterns, offering unique potential to foster deep semantic representation learning and yield semantically more powerful models for different medical applications. But how exactly such strong yet free semantics embedded in medical images can be harnessed for self-supervised learning remains largely unexplored. To this end, we train deep models to learn semantically enriched visual representation by self-discovery, self-classification, and self-restoration of the anatomy underneath medical images, resulting in a semantics-enriched, general-purpose, pre-trained 3D model, named Semantic Genesis. We examine our Semantic Genesis with all the publicly-available pre-trained models, by either self-supervision or fully supervision, on the six distinct target tasks, covering both classification and segmentation in various medical modalities (i.e.,CT, MRI, and X-ray). Our extensive experiments demonstrate that Semantic Genesis significantly exceeds all of its 3D counterparts as well as the de facto ImageNet-based transfer learning in 2D. This performance is attributed to our novel self-supervised learning framework, encouraging deep models to learn compelling semantic representation from abundant anatomical patterns resulting from consistent anatomies embedded in medical images. Code and pre-trained Semantic Genesis are available at https://github.com/JLiangLab/SemanticGenesis .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源