论文标题

Horndeski理论以及更高维度

Horndeski theories and beyond from higher dimensions

论文作者

Jana, Soumya, Dalang, Charles, Lombriser, Lucas

论文摘要

具有宇宙常数的爱因斯坦 - 希尔伯特作用是最通用的局部四维作用,导致运动的二阶导数方程是对称和无差异的。在较高的维度中,可以出现其他术语。我们研究了涉及标量自由度的广义度量分解,以表达高维作用作为有效的四维标量调理理论。从单独的较高维RICCI标量和我们的公制Ansatz的子类中,我们以引力波的发光速度恢复了Horndeski理论的子集。更一般而言,出现了Horndeski术语。当在高维作用中加入高斯 - 邦网标量时,我们会为退化的高阶标量理论以及除此之外的更高衍生术语中产生所有立方级第二个二级术语的贡献。我们讨论了这项技术,是一种以额外的标量自由度生成健康的四维重力理论的方式,并概述了我们方法的进一步概括。

The Einstein-Hilbert action with a cosmological constant is the most general local four-dimensional action leading to second-order derivative equations of motion that are symmetric and divergence free. In higher dimensions, additional terms can appear. We investigate a generalised metric decomposition involving a scalar degree of freedom to express the higher-dimensional action as an effective four-dimensional scalar-tensor theory. From the higher-dimensional Ricci scalar alone and a subclass of our metric ansatz, we recover the subset of Horndeski theories with luminal speed of gravitational waves. More generally, beyond-Horndeski terms appear. When including a Gauss-Bonnet scalar in the higher-dimensional action, we generate contributions to all cubic-order second-derivative terms present in the degenerate higher-order scalar-tensor theory as well as higher-derivative terms beyond that. We discuss this technique as a way to generate healthy four-dimensional gravity theories with an extra scalar degree of freedom and outline further generalisations of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源