论文标题

重力波合并作为大型结构的示踪剂

Gravitational Wave mergers as tracers of Large Scale Structures

论文作者

Libanore, S., Artale, M. C., Karagiannis, D., Liguori, M., Bartolo, N., Bouffanais, Y., Giacobbo, N., Mapelli, M., Matarrese, S.

论文摘要

将来可以将亮度距离空间中重力波(GW)合并的聚类测量作为宇宙学的强大工具。我们考虑在爱因斯坦望远镜样检测器网络以及一些更高级的场景(更多的来源,更好的距离测量,更好的天空定位)中,考虑在爱因斯坦望远镜样探测器网络中合并的角度测量值。我们为宇宙学(物质和暗能量)和合并偏见参数产生Fisher预测。我们针对GW事件的数量分布和偏差的基准模型是基于流体动力学模拟的结果。 Einstein望远镜的宇宙学参数预测不如在不久的将来通过Galaxy聚类观测值(例如Euclid)实现的功能。但是,在更高级的情况下,我们看到了重大改进。此外,我们表明可以在高统计学意义上检测到偏差。无论不同实验的特定约束能力如何,许多方面都使这种类型的分析变得有趣。例如,爱因斯坦望远镜检测到的紧凑型二进制合并将延伸至非常高的红移。此外,GW分析中的光度距离空间扭曲在星系目录中的红移空间变形方面具有不同的结构。最后,测量GW合并的偏差可以为其物理性质和特性提供有用的见解。

Clustering measurements of Gravitational Wave (GW) mergers in Luminosity Distance Space can be used in the future as a powerful tool for Cosmology. We consider tomographic measurements of the Angular Power Spectrum of mergers both in an Einstein Telescope-like detector network and in some more advanced scenarios (more sources, better distance measurements, better sky localization). We produce Fisher forecasts for both cosmological (matter and dark energy) and merger bias parameters. Our fiducial model for the number distribution and bias of GW events is based on results from hydrodynamical simulations. The cosmological parameter forecasts with Einstein Telescope are less powerful than those achievable in the near future via galaxy clustering observations with, e.g., Euclid. However, in the more advanced scenarios we see significant improvements. Moreover, we show that bias can be detected at high statistical significance. Regardless of the specific constraining power of different experiments, many aspects make this type of analysis interesting anyway. For example, compact binary mergers detected by Einstein Telescope will extend up to very high redshifts. Furthermore, Luminosity Distance Space Distortions in the GW analysis have a different structure with respect to Redshift-Space Distortions in galaxy catalogues. Finally, measurements of the bias of GW mergers can provide useful insight into their physical nature and properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源