论文标题
360 $^\ circ $ $深度估计来自多个鱼眼图像,带有折纸皇冠代表
360$^\circ$ Depth Estimation from Multiple Fisheye Images with Origami Crown Representation of Icosahedron
论文作者
论文摘要
在这项研究中,我们提出了一种从多个室内环境中多个全向图像进行全面深度估计的方法。特别是,我们专注于扫平面立体声作为从图像中进行深度估计的方法。我们为全向图像提出了一种新的基于Icosahedron的表示和转向,我们将其命名为“ CrownConv”,因为该表示类似于由折纸制成的冠冕。 CrownConv可以应用于鱼眼图像和等应角图像以提取特征。此外,我们提出了基于Icosahordron的球形扫描,以从提取的特征上产生二十面体上的成本体积。成本量使用三维CrownCONV正规化,最终深度是通过从成本量的深度回归获得的。我们提出的方法通过使用外部摄像头参数来对摄像机对齐。因此,即使摄像机对齐与训练数据集的相差不同,它也可以实现精确的深度估计。我们在合成数据集上评估了提出的模型,并证明了其有效性。由于我们提出的方法在计算上是有效的,因此使用带有GPU的笔记本电脑在不到一秒钟内从四个鱼眼图像中估算了深度。因此,它适用于现实世界的机器人技术。我们的源代码可在https://github.com/matsuren/crownconv360depth上找到。
In this study, we present a method for all-around depth estimation from multiple omnidirectional images for indoor environments. In particular, we focus on plane-sweeping stereo as the method for depth estimation from the images. We propose a new icosahedron-based representation and ConvNets for omnidirectional images, which we name "CrownConv" because the representation resembles a crown made of origami. CrownConv can be applied to both fisheye images and equirectangular images to extract features. Furthermore, we propose icosahedron-based spherical sweeping for generating the cost volume on an icosahedron from the extracted features. The cost volume is regularized using the three-dimensional CrownConv, and the final depth is obtained by depth regression from the cost volume. Our proposed method is robust to camera alignments by using the extrinsic camera parameters; therefore, it can achieve precise depth estimation even when the camera alignment differs from that in the training dataset. We evaluate the proposed model on synthetic datasets and demonstrate its effectiveness. As our proposed method is computationally efficient, the depth is estimated from four fisheye images in less than a second using a laptop with a GPU. Therefore, it is suitable for real-world robotics applications. Our source code is available at https://github.com/matsuren/crownconv360depth.