论文标题

带量子电路的量子正弦模型

The quantum sine-Gordon model with quantum circuits

论文作者

Roy, Ananda, Schuricht, Dirk, Hauschild, Johannes, Pollmann, Frank, Saleur, Hubert

论文摘要

在研究复杂量子系统中,模拟量子模拟有可能成为必不可少的技术。在这项工作中,我们在数值上研究了一个一维,忠实的,模拟的,量子电子电路模拟器,该模拟器是由约瑟夫森连接构建的,用于在1+1个时空尺寸中的量子量子场理论的范式模型之一:量子正弦 - 戈登(QSG)模型。我们使用密度矩阵重新归一化组技术分析了晶格模型,并通过现有的bethe ansatz计算基准了我们的数值结果。此外,我们对顶点运算符的两点相关函数进行分析表格计算,这与我们的数值计算非常一致。最后,我们计算QSG模型的纠缠光谱。我们将我们的结果与基于量子XYZ链的可集成晶状体调查获得的结果进行了比较,并表明与XYZ链相比,量子电路模型不太容易受到缩放的校正。我们提供了数值证据,表明实现QSG模型所需的参数可以通过现代超导电路技术访问,从而为后一个平台的可行性提供了额外的信誉,以模拟强烈相互作用的量子场理论。

Analog quantum simulation has the potential to be an indispensable technique in the investigation of complex quantum systems. In this work, we numerically investigate a one-dimensional, faithful, analog, quantum electronic circuit simulator built out of Josephson junctions for one of the paradigmatic models of an integrable quantum field theory: the quantum sine-Gordon (qSG) model in 1+1 space-time dimensions. We analyze the lattice model using the density matrix renormalization group technique and benchmark our numerical results with existing Bethe ansatz computations. Furthermore, we perform analytical form-factor calculations for the two-point correlation function of vertex operators, which closely agree with our numerical computations. Finally, we compute the entanglement spectrum of the qSG model. We compare our results with those obtained using the integrable lattice-regularization based on the quantum XYZ chain and show that the quantum circuit model is less susceptible to corrections to scaling compared to the XYZ chain. We provide numerical evidence that the parameters required to realize the qSG model are accessible with modern-day superconducting circuit technology, thus providing additional credence towards the viability of the latter platform for simulating strongly interacting quantum field theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源