论文标题
禁忌子问题中的过饱和,计数和随机性
Supersaturation, counting, and randomness in forbidden subposet problems
论文作者
论文摘要
在禁忌子问题问题的领域,我们寻找一个家庭$ \ Mathcal {f} \ subseteq 2^{[n]} $的最大尺寸$ la(n,p)$,不包含$ p $所描述的禁止的包含模式。该地区的主要猜想指出,对于任何有限的POSET $ p $,都存在整数$ e(p)$,使得$ la(n,p)=(e(p)+o(1))\ binom {n} {\ lfloor n/2 \ rfloor} $。 在本文中,我们制定了该猜想的三个强度,并证明了它们的某些特定类别的POSET。 (参数$ x(p)$和$ d(p)$在论文中定义。) $ \ bullet $用于任何有限连接的poset $ p $和$ \ varepsilon> 0 $,存在$δ> 0 $和一个整数$ x(p)$,以便对于任何足够大的$ n $大,以及$ \ nathcal {f} \ subseteq 2^{[n]} $ $(e(p)+\ varepsilon)\ binom {n} {\ lfloor n/2 \ rfloor} $,$ \ mathcal {f} $包含至少$Δn^{x(x(p)} \ binom {n} {n} {n} {\ lfloor n/2 $ p $ p} $ \ bullet $ $ 2^{[n]} $的$ p $ - f $ - f $ famess的数量是$ 2^{(e(p)+o(1))\ binom {n} {\ lfloor n/2 \ rfloor}} $。 $ \ bullet $对于任何有限poset $ p $,存在一个正理性$ d(p)$,因此,如果$ p =ω(n^{ - d(p)})$,那么最大$ p $ - f $ - f $ - free family in $ \ nathcal {p}(p)(n,p)$(n,p)$是$(p)+(p)+(e(e(p)) N/2 \ rfloor} $具有高概率。
In the area of forbidden subposet problems we look for the largest possible size $La(n,P)$ of a family $\mathcal{F}\subseteq 2^{[n]}$ that does not contain a forbidden inclusion pattern described by $P$. The main conjecture of the area states that for any finite poset $P$ there exists an integer $e(P)$ such that $La(n,P)=(e(P)+o(1))\binom{n}{\lfloor n/2\rfloor}$. In this paper, we formulate three strengthenings of this conjecture and prove them for some specific classes of posets. (The parameters $x(P)$ and $d(P)$ are defined in the paper.) $\bullet$ For any finite connected poset $P$ and $\varepsilon>0$, there exists $δ>0$ and an integer $x(P)$ such that for any $n$ large enough, and $\mathcal{F}\subseteq 2^{[n]}$ of size $(e(P)+\varepsilon)\binom{n}{\lfloor n/2\rfloor}$, $\mathcal{F}$ contains at least $δn^{x(P)}\binom{n}{\lfloor n/2\rfloor}$ copies of $P$. $\bullet$ The number of $P$-free families in $2^{[n]}$ is $2^{(e(P)+o(1))\binom{n}{\lfloor n/2\rfloor}}$. $\bullet$ For any finite poset $P$, there exists a positive rational $d(P)$ such that if $p=ω(n^{-d(P)})$, then the size of the largest $P$-free family in $\mathcal{P}(n,p)$ is $(e(P)+o(1))p\binom{n}{\lfloor n/2\rfloor}$ with high probability.