论文标题

在liouville功能上短时间

On the Liouville function in short intervals

论文作者

Chinis, Jake

论文摘要

令$λ$表示Liouville功能。假设假设假设,我们证明了$ \ int_x^{2x} \ big | \ sum_ {x \ leq n \ leq n \ leq x+h}λ(n)\ big |^2 dx \ ll xh(\ log xh(\ log x)^6,$ x \ fefty $ xq \ exp \ left(\ sqrt {\ left(\ frac {1} {2} -o(1)\右)\ log x \ log x \ log x \ log x} \ right)。

Let $λ$ denote the Liouville function. Assuming the Riemann Hypothesis, we prove that $$\int_X^{2X}\Big|\sum_{x\leq n \leq x+h}λ(n) \Big|^2 dx \ll Xh(\log X)^6,$$ as $X\rightarrow \infty$, provided $h=h(X)\leq \exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X \log\log X}\right).$ The proof uses a simple variation of the methods developed by Matom{ä}ki and Radziwiłł in their work on multiplicative functions in short intervals, as well as some standard results concerning smooth numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源